
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1992

Common-cause analysis in human-software
interaction: system design, error control
mechanism, and prevention
Peom Park
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Park, Peom, "Common-cause analysis in human-software interaction: system design, error control mechanism, and prevention "
(1992). Retrospective Theses and Dissertations. 9808.
https://lib.dr.iastate.edu/rtd/9808

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9808?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 

to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9220979 

Common-cause analysis in human-software interaction: System 
design, error control mechanism, and prevention 

Park, Peom, Ph.D. 

Iowa State University, 1992 

U M I  
300 N. ZeebRd. 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

Common-cause analysis in human-software interaction: system design, 

error control mechanism, and prevention 

by 

Peom Park 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Industrial and Manufacturing Systems Engineering 
Major: Industrial Engineering 

Approved^^ Members of the Committee: 

In Charge of Major Work 

For 

For the Gradyde College 

Iowa State University 
Ames, Iowa 

1992 

Copyright © Peom Park, 1992. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

i i  

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS v 

CHAPTER 1. INTRODUCTION 1 

Overview 1 

Multi-Version Redundant Software Systems and the Common-Cause Effect 

in Human-Software Interaction 4 

Literature Search 6 

Definition of Problems and Terminology 8 

Problem situation with common-cause effect 8 

Scope of the problem 10 

Common-cause failure, failure, errors, and reliability 11 

CHAPTER 2. SYSTEM INTERACTIONS AND INFORMATION 

PROCESSING IN SOFTWARE DEVELOPMENT 15 

Human-Software System Interactions 15 

The software engineer and the programming task 17 

Typical failure mechanisms among human programmers, the operating 

system, and hardware systems 18 

Principles of human-software interaction 21 

Guidelines of modeling in human-software interaction systems .... 24 



www.manaraa.com

i i i  

Human-Software Information Processing Systems 25 

Human sensory capacity and stimulus response compatibility 25 

The information channel of limited capacity 28 

Time-shared systems 32 

Knowledge-Based System Interaction 34 

Knowledge-based interaction systems required by an adaptive human-

software interface 34 

Fuzzy set application to knowledge-based human-software interaction 37 

Software Development System 39 

Specifications of requirements and tasks 39 

Software development system design 43 

Program coding 45 

System validation of human-software interaction 46 

Fault-tolerant human-software interaction system 47 

CHAPTER 3. COMMON CAUSE ERROR AND THE HUMAN 

RELIABILITY FUNCTION 49 

Human Error and Reliability in Human-Software Interaction 49 

Stress characteristics and stress check list factors in human-software 

interaction 50 

Rook's model of human error occurrence 53 

Human error estimates and reliability function 54 

Technique for Human Error Rate Prediction (THERP) 55 

Human-software systems reliability 58 

Common Cause Failures in Human-Software Interactions 59 



www.manaraa.com

iv 

Common-cause failure analysis of redundant systems 61 

CHAPTER 4. A COMMON CAUSE MODEL AND EXPERI

MENTAL DESIGN IN HUMAN-SOFTWARE INTERACTION 65 

Common-Cause Model and Function 65 

Common-cause model 65 

Common-cause function 66 

Consideration factors and environmental conditions of human-software 

interactions 70 

Common-Cause Error Protocol and Common-Cause Factors 71 

Identification of common-cause error protocol 71 

Pattern recognition error modes 74 

Programming behavior domain error modes 76 

Experimental Design and Procedure 80 

General description of experiment 80 

Problems and hypotheses of experiment 84 

Procedure and method of experiment 85 

CHAPTER 5. COMMON-CAUSE ANALYSIS AND RESULT REP

R E S E N T A T I O N  . . .  9 4  

Analysis of Subject Task Data 94 

Common-Cause Mode-Oriented Data Statistics 98 

Common-cause error mode data and analysis table 98 

Value of the common-cause function and simulated rating 117 

Mapping geometrical vector evaluation in hexahedron contours .... 122 

Historical common-cause error recovery time zone 126 



www.manaraa.com

V 

Transition relationship diagram and grouping of major common-cause 

factors 130 

Correlation and regression analysis 132 

General observations and causal factors of common-cause error domain 

in human-software interaction 139 

Common-Cause Error Control Mechanism and Prevention 142 

Error control mechanism and environment 142 

Allocation of function and system interaction 144 

Design analysis in human-software interaction 146 

Knowledge-based human-software interaction and prevention 147 

Control of common-cause factors of incompleteness and uncertainty . 148 

Improving software productivity 150 

CHAPTER 6. CONCLUSION 152 

Summary 152 

Conclusions 156 

BIBLIOGRAPHY 158 

APPENDIX A. THE COMMON-CAUSE PRINCIPLE 168 

Common Cause and Rational Belief 168 

The Principle of the Common Cause 169 

Statistical Dependence 170 

APPENDIX B. EXPERIMENTAL MATERIAL AND REQUIRE

MENT SPECIFICATIONS 172 



www.manaraa.com

vi 

LIST OF TABLES 

Table 5.1: Subject Task Data in A Common-Cause Model Experiment . 96 

Table 5.2: Weight Rating Factors for Subject Evaluation: Interview Search 

from Programming Experts 97 

Table 5.3: Subject Level Evaluation with Rating Factors 99 

Table 5.4: Common-Cause Error Mode and Experimental Data Analysis: 

Total 100 

Table 5.5: Common-Cause Error Mode - Data Analysis: Language-C . . 105 

Table 5.6: Common-Cause Error Mode - Data Analysis: Language-Fortran 106 

Table 5.7: Common-Cause Error Mode - Data Analysis: Requirement-A 107 

Table 5.8: Common-Cause Error Mode - Data Analysis: Requirement-B 108 

Table 5.9: Common-Cause Error Mode - Data Analysis: Expert Level 1 109 

Table 5.10: Common-Cause Error Mode - Data Analysis: Expert Level 2 110 

Table 5.11: Vector Evaluation with Rating Simulation 121 

Table 5.12: Frequency of Transition Load and Relationship between 

and Pj 130 

Table 5.13: Frequency of Transition Load and Relationship between 

and 132 



www.manaraa.com

vii  

Table 5.14: Frequency of Transition Load and Relationship between Pj 

and 133 

Table 5.15: Pearson Correlation Coefficients / Prob > | R | under HQ: 

Rho=0 / n = 10 134 

Table 5.16: ANOVA Test for Variance Analysis (Model: Frequency = Re

quirement Level Language; Dependent Variable: Frequency) . 135 

Table 5.17: ANOVA Test for Variance Analysis (Model: CorrectionTime 

= Requirement Level Language; Dependent Variable: Correc

tionTime ) 136 

Table 5.18: ANOVA Test for Variance Analysis (Model: ComputingTime 

= Requirement Level Language; Dependent Variable: Com

putingTime) 137 

Table 5.19: Regression Analysis (Dependent Variable: Frequency) .... 138 

Table 5.20: Regression Analysis (Dependent Variable: Design Time) . . . 139 



www.manaraa.com

viii  

LIST OF FIGURES 

Figure 1.1: The Research Design Scheme in Human-Software Interaction 3 

Figure 1.2: Event Diagram of A Multi-Version Redundant Software Sys

tem in Human-Software Interaction 9 

Figure 2.1: Three Components of Human-Software Interaction 16 

Figure 2.3: Representation of Human-Software Information Processing Sys

tems 26 

Figure 2.7: Software Development and System Interactions 40 

Figure 2.8: Common-Causes and Recovery Zones 41 

Figure 3.1: Performance Effectiveness as a Function of Stress Level. ... 51 

Figure 3.2: Probability Tree Diagram for a Programming Task 56 

Figure 4.1: Schematic Design Stages of the Common-Cause Model . ... 67 

Figure 4.2: Three Common-Cause Error Modes and Evaluation Variables 68 

Figure 4.3: Programming Behavior Error Domain Mode 77 

Figure 4.4: The Experimental Procedure in Human-Software Interaction 83 

Figure 5.1: Portion of Identification of Common-Cause Error Mode . . . 101 

Figure 5.2: Portion of Pattern Recognition of Common-Cause Error Mode 102 

Figure 5.3: Portion of Behavior Domain of Common-Cause Error Mode . 103 



www.manaraa.com

ix 

Figure 5.4: Portion of Frequency in Identification of Common-Cause Er

r o r  M o d e  I l l  

Figure 5.5: Portion of Frequency in Pattern Recognition of Common-

Cause Error Mode 112 

Figure 5.6: Portion of Frequency in Behavior Domain of Common-Cause 

Error Mode 113 

Figure 5.7: Portion of Correction Time in Identification of Common-Cause 

Error Mode 114 

Figure 5.8: Portion of Correction Time in Pattern Recognition of Common-

Cause Error Mode 115 

Figure 5.9: Portion of Correction Time in Behavior Domain of Common-

Cause Error Mode 116 

Figure 5.10: Portion of Occurrence Time in Identification of Common-

Cause Error Mode 118 

Figure 5.11: Portion of Occurrence Time in Pattern Recognition of Common-

Cause Error Mode 119 

Figure 5.12: Portion of Occurrence Time in Behavior Domain of Common-

Cause Error Mode 120 

Figure 5.13: Identification of Common-Cause Error Mode: Geometric Con

figuration 123 

Figure 5.14: Pattern Recognition of Common-Cause Error Mode: Geomet

ric Configuration 124 

Figure 5.15: Behavior Domain of Common-Cause Error Mode: Geometric 

Configuration 125 



www.manaraa.com

X 

Figure 5.16: Identification of Common-Cause Error Mode: Recovery Time 

Zone (Units: portion (%) of occurrence time.) 127 

Figure 5.17: Pattern Recognition of Common-Cause Error Mode: Recov

ery Time Zone (Units: portion (%) of occurrence time.) . . . 128 

Figure 5.18: Behavior Domain of Common-Cause Error Mode: Recovery 

Time Zone (Units: portion (%) of occurrence time.) 129 

Figure 5.19: Transitions Relationship Diagram and Grouping of Common-

cause Error Modes 131 

Figure 5.20: Common-Cause Error Control Mechanism 143 

Figure 5.21: Common-Cause Error Control Environment and Human-Software 

Interaction 145 



www.manaraa.com

xi 

ACKNOWLEDGEMENTS 

I would like to express my appreciation to many persons who assisted me in 

this research and in the completion of my Ph.D study. Dr. S. Keith Adams, my 

major professor, deserves special recognition for his encouragement and guidance 

throughout my research and study life. Without his assistance, consideration, and 

patience, this research never would have been accomplished. Dr. Way Kuo who waa 

my former advisor and is one of the committee members, is responsible for providing 

the stepping stones on which I began my study towards a doctoral degree. His unique 

and convincing perceptions of the software reliability proved to be a great source of 

motivation. I truly indebted much to them for these. 

I would like to thank my committee members: Dr. Géraldine Montag, Dr. II. T. 

David, Dr. William J. Kennedy, Dr. Doug W. .Jacobson, all of whom provided valid 

criticisms and comments concerning through research progress to my final disserta

tion. The special thanks go to Dr. John Jackman, Dr. Jo Min and many colleagues 

in Industrial and Manufacturing Systems Engineering to advise and to support for 

the experiment and friendship. 

Last, but most importantly, I want to acknowledge the members of my family, 

parents and brothers, for providing my passion and study. Ockran Park, my wife, 

was wonderful support to this achievement during all study periods. 



www.manaraa.com

1 

CHAPTER 1. INTRODUCTION 

Overview 

This research introduces the analysis and a new design domain of common-cause 

human error in human-software interactions. This study is concerned with common-

cause human domain errors during software system development. This includes the 

contents, conditions, and their characteristics in human-software interaction. It also 

concerns interactions between the human, who is presumed responsible for overseeing 

the software system, usage of the software system and software development. Also 

of concern is how to reduce and to prevent human errors in software development 

systems. 

In these days common-cause failure studies [76] [30] [116] in the human-system 

area have been receiving wide attention especially in the software systems area. This 

is because the assumption of statistically independent failure of redundant systems 

is easily violated in real human-software interaction processing systems. Since the 

software components are not independent of each other in regard to failure behavior, 

software redundancy does not improve reliability except in multi-version software de

velopment. Multi-version software system development is often requested to improve 

of reliability, especially in ultra-high reliability systems such as nuclear power control, 

air traffic control, space shuttle missions, and war games. The major common-cause 
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errors found in this research can contribute strongly to internal common-cause fail

ure effects in a multi-version software development project. Human error, the human 

reliability function, the principle of the common-cause and its effect, and the proba

bilistic concept of common-cause are reviewed in this work. 

There are three main components in human-software interaction; the human as 

a software engineer, software as an operator, and the hardware system as a software 

development work station. It is important to analyze the characteristics and the 

environment of each subsystem. A software development system will be derived to 

analyze the task of software development. Human-software information processing 

will be discussed in order to clarify the human behavioral process in human-software 

interaction. 

The common-cause error model includes three analytical reasoning categories 

and a common-cause function established in terms of human-software information 

processing systems, human error mechanisms, and cognitive control domains. It is 

used to characterize the human factors mechanisms behind typical categories of errors 

considered as occurrences of human-software task mismatches. 

An experiment to develop an improved design concept, its procedure, and anal

ysis was conducted to define common-cause errors in the human domain of software 

development. The major role of this experiment is to find contents, environments, 

and conditions of common-cause human domain errors, and a design procedure for 

the analysis of common human behavioral factors. Overall research design scheme is 

shown in Figure 1.1. In this experiment, each software development by a subject, 

and the effect of common-cause failure are analyzed to evaluate human-software in

teraction and to improve software development productivity. Finally, a prevention 
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method for the common-cause human error control mechanism is introduced with 

aspects of knowledge-based engineering, fuzzy set application, and intelligent design 

technique. 

Multi-Version Redundant Software Systems and the Common-Cause 

Effect in Human-Software Interaction 

A failure in programming task can occur during any phase of software develop

ment. Potential failures can sometimes be found by software engineers as the result of 

design review, and code proof reading. A software failure is a departure of operation 

from specified requirements in setting up or modifying a program. The common-

cause effect, as a reliability component of the common-cause failure system, serially 

connected with other system components, in human-software interaction, is affected 

by internal common-cause human domain errors. 

The component structure of AND-OR rules in a out of n component structure 

assumes that failures of different components are independent of each other [76]. This 

means that there can be no failures that result from the same cause [116]. Reliabil

ity is often increased in hardware systems by providing redundant components. In 

software systems, the situation is different. In hardware systems, the causes of fail

ure associated with physically individual but functionally identical units in hardware 

component systems, are frequently independent. This phenomenon does not occur in 

software systems because multi-copies of a program are identical not only in function 

but also in the faults that can cause failures. 

However, there is a possible exception in the situation of software development 

if multi-version software components are developed by different teams. There is some 
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possibility that many faults introduced may be independent of each other with redun

dant software components developed by separate teams following the same specific 

requirements. This described by Knight et al. [56] who point out experiments in 

multi-version programming which seem to indicate that failures in different versions 

are clearly not completely independent of each other. They do not appear to be all 

common either. Multi-version programming may well improve the reliability level, 

but not to the extent totally independent components would. Having totally in

dependent components may be cost effective for critical modules of systems with 

ultra-high reliability requirements, such as nuclear power plants, air traffic control 

systems, space shuttle missions, and war games. 

The common-cause effect is a system component that is not well recognized. It is 

serially-connected with the human-software system, operating system, and hardware 

system. Common-cause failure effect can be defined as the consequences a common-

cause failure mode has on the operations, function or status of an item/task. Failure 

effects are classified as local effect, next higher level and end effect [4]. Here, common-

cause failure can be defined as the simultaneous failure of more than one component, 

or more than one component failing due to a single cause [42]. It is also defined by I. 

A. Watson [116] as inability of multiple, first-in-line items to perform as required in a 

defined critical time period, due to a single underlying defect or physical phenomena, 

such that the end effect is judged to be a loss of one or more systems. Human aspects 

of internal common-causes are also present in common-cause effect at human-software 

interactions of multi-version software development. Because this common-cause effect 

affects the productivity and the development cost of a software project, removal 

common causes is very important in improving reliability in an ultra-high reliability 
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software project. 

Literature Search 

Deborah Mitta [75] presented a methodology for quantifying expert system us

ability which is considered from a designer's prospective. A linear multivariate func

tion for measuring usability is described and procedures for selecting function vari

ables are provided. The usefulness of the usability function as a design tool is in

vestigated. The six variables for expert useability are: user confidence, the user's 

perception of difficulty, correctness of solution, the number of responses required of 

users, inability of expert system to provide a solution, rate of help requests. 

Thomas A. Thayer et al. [112] presented results of a study of data, principally 

error data, collected from four software development projects. This study was de

signed to determine what might be learned about various types of errors in software, 

the effectiveness of the development and test strategies in preventing and detecting 

errors, and the reliability of the software itself. This study provided guidelines for 

data collection and analysis on other projects. 

Albert Endres [33] classified error into six groups; machine error, user or operator 

error, suggestions for improvement, duplicate, documentation error, and program er

ror. Program errors were classified as machine configuration and architecture (10%), 

dynamic behavior and communication between processes (17%), functions offered 

(12%), initialization (8%), addressability (7%), reference to names (7%), counting 

and calculating (8%), and others (16%). It was possible to distinguish causes for 

errors in 6 categories; technological, organizational, historical, group dynamic, indi

vidual, and other. 
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Edward A. Youngs [121] discussed systematizing the description of errors that 

programmers make by collecting protocol data from 42 programmers. Eight func

tionally defined constructions accounted for more than 75 percent of all 1189 errors 

committed: (1) allocation (16%), (2) assignment (29%), (3) iteration (10%), (4) I/O 

formatting (6%), (5) other I/O (8%), (6) parameter/subscription list (5%), (7) con

ditional execution (5%), (8) vertical delimiter (4%). 

Jens Rasmussen [90] classified cognitive control domains: skill, rule, and knowledge-

based behavior. He also described psychological mechanisms in the area of human-

task mismatches. 

Modeling and predicting human error was studied by David D. Woods [120]. 

This research included a limited rationality approach and some directions in error 

modeling. 

James Reason [92] studied a general framework for locating the principal limita

tions and biases giving rise to the more predictable varieties of human error. Three 

types of error were identified: skill-based, rule-based, and knowledge-based mistakes. 

Common-cause failure in system interaction and statistical theory are discussed 

in the following papers: Review of Common-cause Failures by I. A. Watson [116]; 

Rational Belief and the Common-Cause Principle by Bas C. Van Fraassen [37]; Causal 

Forks and Common Causes by Wesley C. Salmon [102]; Causal Inference and Causal 

Explanation by Clark Glymour [38]. 
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Definition of Problems and Terminology 

Problem situation with common-cause effect 

The mission of a specific software development project is to set up system compo

nents of human-software interaction. Each configuration is composed of a computer 

work station, a Central Operating Processor (COP) whose computer assigns and 

controls all work at the local working stations, and a Multi-Version Software (MVS) 

development load. One approach to software design research using such a system that 

tends to be expensive, is to install two independent versions of MVS developed by 

two completely separate software development teams/engineers. The common-cause 

effect affected by internal common-cause human domain errors is determined using 

redundant components in this case as in Figure 1.2. 

In the given example [76], the system reliability is 

(0.99)(0.95){1 - [1 - (0.98) 

If there are no common-cause error effect , then ?• = 0 and Rx becomes 0.809(Aa; = 

0.0662 failure/cpu hr.). However, the chances are that r is relatively large, that is, 

similar common errors are made by each team. If r = 0.5, then Rx = 0.922(Ax = 

0.0254 failure/cpu hr.). In the case of r = 0, the development cost for the MVS 

software will be about $580,000 ($290,000 for each copy of the software). Similarly, 

if r = 0.5 the software development cost will be about $1,150,000. An additional 

$250,000 will be incurred for the second unit of MVS hardware. The total cost will 

be $830,000 or $1,400,000, depending on the value of r in the Musa's study. 
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Figure 1.2: Event Diagram of A Multi-Version Redundant Software System in Hu
man-Software Interaction 
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Scope of the problem 

This study deals with the problem of common-cause human domain error in 

human-software interaction, that is, the major causal factors in common-cause fail

ure effects on the multi-version software development. Questions to be addressed 

include: how to analyze reasons for common-cause errors, how to design common-

cause error control mechanisms, and how to define methods for their prevention. 

Specially, the following questions need to be addressed: 

(1) What are common-cause failures and their internal common-cause human domain 

errors in human-software interactions? 

(2) What are the contents and conditions of human-based errors affected by a common-

cause effect in a multi-version redundant software development system ? 

(3) How can internal common-causes by human-based errors be reduced and pre

vented in the software development? 

(4) How can software engineers be aided by a human-based common-cause error con

trol mechanism in the design of high reliability software system? 

(5) How should interactive systems between the human, who is presumed responsible 

for overseeing software systems, and software development efforts which are human 

oriented be designed for high reliability efficiently? 

Some of the requirements and motivations for common-cause error analysis that 

can be extended to human-software error control and prevention in software devel

opment. They are: 

(1) There must be a coherent methodology and processing mechanism to control and 

guide a software project to successful completion. 

(2) A new design-based knowledge for multi-version redundant software development 



www.manaraa.com

11 

is needed to train experienced software engineers. 

(3) A large portion of experienced software engineers do not have a sensitivity to 

human-software interactive error mechanisms and methods of preventing errors. 

(4) Software development has resulted in many incorrect human programming be

haviors which have led to low quality software and excessive costs. 

(5) There are unique aspects of software development without direct hardware/operation 

analogs; thus not all the training learned about past hardware/operation development 

is applicable to the software development task. 

Common-cause failure, failure, errors, and reliability 

Common-cause failure is defined as "the simultaneous failure of more than 

one component [42]." Here, a failure of a component or subsystem is said to be a 

propagating failure when the failure changes the programming conditions, environ

ments or requirements in such a way as to cause the failure of other components 

of software development. It is said to be a common-cause failure if more than one 

component fails due to a single cause (usually assumed to be external to the pro

gramming conditions of the human-software information processing system). Such 

common causes may be from the human domain attributable to psychological behav

ior or to physiological capacity, or to external disruption by man-made or natural 

events. 

In hardware reliability theory where multiple components fail due to a single 

cause, a common-cause failure is said to have occurred. This can easily be extended 

to software components. A straightforward method to incorporate these common-

cause failures is given in D hi lion [30]. Let r be defined as the fraction of component 
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failures that are common-cause. Each component failure intensity A is the sum of an 

i n d e p e n d e n t  f a i l u r e  i n t e n s i t y  ( 1  —  r ) A  a n d  a  c o m m o n - c a u s e  f a i l u r e  i n t e n s i t y  r X .  

A failure of a human-software interaction system occurs when that system does 

not perform its servi ce / execution in the manner specified, whether because it is un

able to perform the service/execution at all, or because the results and the external 

state^ are not in accordance with the specifications. Failure is "a departure of the 

external results of program operation from program requirements on a run [76]." A 

departure is the occurrence of a discrepancy between the desired output result stated 

in the requirement specifications for the specific run and the actual output result. 

Therefore, it represents a defect in a transformation. The output result is the set 

of values of output variables with a program execution. A discrepancy is defined 

as "the difference between the actual value of an output variable with an execution 

and the value expected by the requirement specifications [76]." The time of a failure 

is the time at which the discrepancy first occurs. The type of failure is defined as 

the conjunction of both run type or input state and discrepancy. The allocation of 

causes to human or components in human-software interaction systems is a purely 

pragmatic question regarding the stop rule applied for analysis after the fact. 

Fault is defined as a defective, missing, or extra instruction or set of related 

instructions that is the cause of one or more actual or potential failure types. There 

cannot be multiple faults causing a failure. The entire set of defective instructions 

that is causing the failure is considered to be the fault. The requirement that the 

instructions be related is specified so that the count of the number of faults cannot be 

^ The external state of a system is the result of a conceptual abstraction function 
applied to its internal state. The internal state of a system is the aggregation of the 
external states of all its components [73]. 
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changed arbitrarily by a regrouping of instructions. The characteristics of a fault are 

[76]: (1) it is the cause of deviation from a standard; (2) it is found on the causal path 

by tracing backwards from this effect; (3) it is accepted as a familiar and therefore 

reasonable explanation; (4) a cure is known. 

Human error consists of any significant deviation from a previously established, 

required or expected standard of human performance, that results in unwanted or 

undesirable time delay, difficulty, problem, trouble, incident, malfunction, or failure 

[85]. In another way, it is described as the failure to carry out a specified task (or the 

performance of a forbidden action, or improper performance of a task) that could lead 

to disruption of scheduled operations or result in damage to property and component. 

Errors can arise from many causes, but most of them can be grouped in one of four 

categories [76]: communication, knowledge, incomplete analysis, or transcription. In 

real situations where arguments of precisely what is or is not a human error are less 

important than what can be done to prevent them, the operational definition may be 

restricted to those errors (a) which occur within a particular set of activities, (b) which 

are of some significance or criticality to the primary operation under consideration, (c) 

involve a human action of commission or omission, and (d) about which there is some 

feasible course of action which can be taken to correct or prevent their reoccurrence 

[22]. 

Human reliability is defined as "the probability of accomplishing a job or task 

successfully by humans at any required stage in a system operation within a specified 

minimum time limit [28]." Here, human-software reliability can be defined as the 

probability of successful performance with human-software task ability and reliable 

systems at any required stage in an operation of the human-software interaction 
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system within a specified duration of time. 

Human-Software Information Processing system is defined by a network 

system of human and software components capable of accepting information, pro

cessing it according to a plan and a control, and producing the desired results or 

goals. 
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CHAPTER 2. SYSTEM INTERACTIONS AND INFORMATION 

PROCESSING IN SOFTWARE DEVELOPMENT 

Human-Software System Interactions 

Human-software interaction represented by Figure 2.1 consists of three elemen

tal components: human, software, and hardware. It is the software that gives the 

computer its individuality; the computer then works as a link to connect the system 

components. Considerable effort has been expended to establish theories and prac

tices for attaining hardware reliability. One reason is that hardware is more general 

than the software. 

Software tends to be specific to each system, although sometimes efforts are made 

to utilize standard program packages that have been verified in other applications. 

In contrast to hardware, only small samples of similar software are available and it 

is hard to verify inferences concerning reliability. 

In identifying the scope of human-software interaction, it is well to keep in mind 

the meaning of an interaction, a link or a connection among the three components. 

The interaction can be addressed on three sides of the diagram in Figure 2.1. 

(1) The human side of the interaction includes: 

Personnel availability: manning levels and work levels 

Personnel capability: skills and skill levels 
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www.manaraa.com

17 

Personnel performance: completion of assigned tasks 

Personnel productivity; quantity produced per unit time 

Personnel safety. 

(2) The software side of the interaction includes: 

Specification of requirements 

Design: software design, process design 

User-friendliness: user oriented, easy use, objective oriented 

Interface with hardware: hardware capacity with software size 

Software productivity: efficiency, effectiveness. 

(3) The hardware side of the interaction includes: 

Information displays: the information displayed and the display format 

Display characteristics: symbol size, shape, color, density, etc. 

Data organization: architecture producing hierarchy of data specificity 

Dialogues: command modes, error messages, prompts, alerts, queries, etc. 

Procedures: task sequences, decisions, and decision rules 

Data entry devices: for data entry, manipulation, and designation 

Documentation: hard copy manuals and aids. 

The software engineer and the programming task 

Will the software engineer solve a given problem? How-well will he or she be 

able to perform that task, and how will this system be well-adapted to achieve the 

intended goal? The answers depend on the following critical factors: the nature of 

the task, the availability of the needed expertise, and the ability to analyze and to 

perform the task in such a way that a computer program, using limited levels of 
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reasoning, can work out what has to be done. 

The conditions will tend to rule out certain applications from the start; the 

software engineer should be able to perform the task, know how he or she performs 

thé task, be able to explain how to perform the task, have the time to explain how 

to perform the task, and be motivated to cooperate in the enterprise. 

Even if the above conditions are met, there may be features of the task that 

limit the extent that skills can be mechanized. This occurs, for instance, if the 

task involves complex sensory-motor skills beyond the scope of current technology 

in robotics, computer vision, and high technological software operations; also if the 

task involves common-cause reasoning or arbitrary amounts of everyday knowledge. 

To be effective would also require an enormous amount of knowledge about the 

world: knowledge of objects and their properties, software engineers (or teams) and 

their motivations, physical and psychological causality. The fact is that only the most 

rudimentary notions about how to impact this kind of common-cause, knowledge to 

computer software work exist. So any task that is not sufficiently self-contained to be 

encapsulated in a finite set of particular facts and general rules is definitely beyond 

the state of the art. 

Typical failure mechanisms among human programmers, the operating 

system, and hardware systems 

There are four typical failure mechanisms in human-software interaction, poor-

quality fabrication, human-software design, overload of the component, and wear-out 

among the three components: human, software system, and hardware system [104]. 

The following examples are illustrative: 
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(1) Poor-quality fabrication: 

(la) Human: 

Reload control button pushed in error during operation. 

Wrong disk mounted on drive by operator. 

Radar control switch put into track position by operator rather than 

scan position. 

(lb) Software: 

Typographical error in entering an instruction which eludes compiler 

checks. 

Wrong version of a subroutine included by mistake. 

Program has small incompatibility with operating system or hardware. 

(Ic) Hardware: 

Bad solder joints. 

Defective component installed. 

Mechanical misalignment. 

(2) Human-software design: 

(2a) Human: 

The human is required to enter data in response to a system request. One 

of the requests is ambiguous and wrong data are entered. 

Assume that following a system crash, the operator must reenter certain 

key data. If the key sequence is illogical many errors will occur. 

The operator follows an incorrect explanation in the operator's manual 

and inadvertently clears all memory. 

(2b) Software: 
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When the operator returns from subroutine A to the main program he 

or she fails to clear all registers as they should. 

The THEN ELSE branches are mistakenly interchanged in 

an IF statement. 

The series expansion used for a special mathematical function does not 

converge for certain values. 

(2c) Hardware: 

Component with too low a rating is specified. 

Metal parts are exposed to a corrosive atmosphere. 

When an address is loaded from the front panel of a minicomputer, 

it erroneously clears the accumulator. 

(3) Overload of a component: 

(3a) Human: 

An air traffic controller cannot handle more than 50 targets without 

overloading his or her vigilance capacity and making many errors. 

The operator forgets the right sequence of commands on occasion 

because there are too many steps. 

The human cannot react fast enough to enter control commands in 

an emergency situation. 

(3b) Software: 

A timesharing system designed to handle 24 terminals performs poorly 

when over 20 terminals are connected and its crash rate rises. 

The input module of a text-editing system cannot keep up with a 

very fast typist. 
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An air traffic control system has a capacity of 100 planes. When 

more than 100 planes are entered, targets on the screen disappear 

without warning. 

(3c). Hardware: 

A capacitor with a maximum rating of 50 V is used in a circuit where 

100-V transients occasionally occur. 

An unexpected heavy load on a gear train breaks off some gear teeth. 

The hardware cannot keep up with an input of 300 band, even though 

specifications call for operation at this rate. 

(4) Wear-out: 

(4a) Human: 

Possibly errors due to cumulative fatigue. 

(4b). Software: 

No analogous effect. 

(4c). Hardware: 

A mechanical clutch begins to slip after 5000 hours of operation. 

The insulation on certain wires cracks after 10 years of survival, 

causing short circuits. 

High humidity eventually causes leakage failure of certain types 

of integrated-circuit packages. 

Principles of human-software interaction 

There are six intellectual principles of human-software interaction processing. 

(1) The only way to adequately design a system is to build it. Brooks [20] describes 



www.manaraa.com

22 

his throwaway one rule, which is a statement on the limits on human intelligence, 

or a more academic version of Murphy's Law ^. It implies, however, that software 

development is an inherently iterative process. 

(2) Software development is a logical rather than a physical system element. Soft

ware is developed or engineered; it is not manufactured like hardware, even though 

the software factory concept recommends the use of automated tools, such as Fourth 

Generation Techniques (4GT), for software development. 

(3) Individual programmers have enormous differences in productivity. Although an 

imperfect measure, lines of program produced per day is an obvious means of eval

uating output. By this measure the variations in output have been observed within 

the same programming shop among programmers of similar background. Clearly, all 

of these differences cannot reflect learned behavior. 

(4) Software development costs are concentrated in the engineering of human-software 

interaction. Reliability and error-content measures are the key factors for software 

quality control and the software cost function. A much more costly class of errors 

consists of those which are detected in the field. Boehm [13] studied the relative cost 

of removing software errors, by phase of development as given in Figure 2.2^. 

(5) The human brain has intrinsic limits on the complexity of human-software in

teraction problems with which it can efficiently deal. Halstead introduced concept 

of software redundancy and program length now called by his name [40]. Tests have 

shown that there is a desired level of redundancy for optimal absorption of infor-

^ In general Murphy's Law states that If anything can possibly go wrong with a 
design, test, or experiment - it will [7]. 

^The data sources were IBM-SDD, TRW, GTE, and BELL LABS programs. The 
upper and lower curves represent a 95 percent confidence interval [13]. 
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mation; being either too concise or too verbose inhibits understanding. However, 

Halstead length^ is a concrete way of measuring the interactions of complexity and 

length. He mentioned that humans have an upper limit to the Halstead length they 

can handle. To deal with a problem requires reducing it to models of acceptable 

Halstead length. This can be done by simply ignoring details or by subdividing a 

problem into pieces, although this latter raises new, possibly very large costs of co

ordination. 

(6) Human behaviors are very different between group and individual. Brooks [20] 

observed that six programmers for one month are not the same as one programmer for 

six months. It should not surprise economists familiar with the transaction costs of 

coordinating efforts. Subsequent result from Brooks have established extreme trade

offs between complexity and elapsed time (an 8% increase in complexity requires a 

doubling of staff, for example, according to one accepted rule). 

Guidelines of modeling in human-software interaction systems 

There are parallels between interaction modeling and software engineering pro

duced by Raduchel [88]. 

(1) Every good model is a properly specified model. 

(2) Tools are vital to good modeling. 

(3) The tasks of implementing the estimation and solution techniques are no longer 

central to modeling. 

(4) Modeling is usually a dynamic process with ongoing maintenance and manage

ment required. 

^Halstead length equation; N = + -q^log^ [40] 
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(5) The only way to adequately specify a model is to build it. 

(6) Individual model-builders have tremendous variations in productivity. 

(7) Few, if any, individuals can comprehend all the detail of a large model. 

(8) Group modeling efforts are very different from individual efforts. 

Human-Software Information Processing Systems 

Human-Software Information Processing (HSIP) represented by Figure 2.3 is a 

part of experimental psychology concerned with the basic research problem of how 

information flows and is transformed within the human organism and software sys

tems. The Information Processing System in human-software interaction is defined 

by a network system of human and software components capable of accepting infor

mation, processing it according to a plan and a control, and producing the desired 

results or goals. Human information processing in engineering psychology or hu

man factors and computer data processing in software engineering are technologies 

that try to improve the performance of human-software interaction systems in which 

humans and softwares are each parts. 

Human sensory capacity and stimulus response compatibility 

A model developed by Welford [119] to identify skill mechanisms is presented 

as Figure 2.4. The lines show information flow and the boxes denote identifiable 

processing function. 

The concept of Stimulus-Response Compatibility [36] is used to explain phenom

ena in reaction-time experiments, where spatial mappings of stimuli onto responses 

are varied. The spatial geometry of stimulus and response arrays can be manipulated 
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in ways limited only by the software designer's ingenuity. The results of Pitts et al. 

[36] can be indicated by noting that reaction time is fastest and error rates lowest 

when there is a direct correspondence between the geometry of stimulus and response 

arrays. 
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Figure 2.4; Hypothetical Block Diagram of the Human Sensory-Motor System [119] 

The most common method of measuring S-R compatibility is to take a vote; that 

is, several arrangements are portrayed, and people are asked to select the mapping 

they find most desirable, called population stereotype. A slightly more convincing way 
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of measuring S-R compatibility is to conduct an experiment; the fastest and most 

accurate mapping is obviously the most compatible. 

Investigations of S-R compatibility making use of sophisticated mathematical 

treatments also focus upon properties of a hypothetical translation stage. Harm 

et al. [41] plotted a Latency Operating Characteristic (LOG) - a function relating 

Reaction Time (RT) to a measure of accuracy - for compatible and incompatible two-

choice reactions. The result was that compatibility affected the noise level inside the 

translation stage, so that incompatible mapping caused elevations in correct and 

error RT. However, Duncan [32] disagreed that individual S-R bonds were most 

important and instead argued that systems of rules governed response generation 

under various S-R mappings. With S-R compatibility it is easy to apply this study 

to improving human productivity in any system that required operators to map the 

stimulus information given in displays to a set of controls. 

The, information channel of limited capacity 

The Information Channel of Limited Capacity (ICLC) is the most important and 

the most influential theoretical construct in human-software information processing. 

The ICLC has developed within the areas of experimental psychology of reaction 

time, attention, and memory. Broadbent [17] clearly states the applied origins of his 

model: "In situations arising from technology our attention is compelled to the major 

variables in human behavior, and we cannot ignore them in favor of some artificial 

distinction. The researcher, remote from immediate practical pressures, may indeed 

be free to study major variables in which at this instant society does not seem to 

be interested; but he should not use this freedom in order to study minor variables, 
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until there are no major ones within reach of our techniques. The necessity of some 

relevance to real life is a worthwhile intellectual discipline." 

Human-software information processing theory tells us that not only is a partic

ular stimulus important in human-software interactions but also is the set of stimuli 

from which that particular stimulus was selected; that is, behavior is controlled by 

events that did not occur on some particular occasion but might have occurred. It 

can be determined whether the amount of information generated at the source is 

the amount that reaches the receiver. One of the major question in determining the 

information channel capacity is the amount of information per unit time that can 

be transmitted through the human. Even though this amount varies by the coding 

schemes used in specific tasks, an important theoretical fact is that some fixed upper 

bound exists. 

Figure 2.5 is the most lasting and influential component of Broadbent's [19] 

model which represents the human operator in terms of the flow of information. A 

selective filter mechanism protects the information channel of limited capacity. This 

filter selects which elements of the buzzing confusion of the world available to our 

senses gain entry. A model of attention with such a gatekeeper is now called an 

early-selection model of attention, and there has been much dispute about how and 

where sensitivity is imposed, even though there is general accord that selectivity is 

an important characteristic of human-software information processing. However, this 

filter model has weak points, such as weakening low priority information [114], and 

making contact with memory. 

Another kind of research supports the limited-channel information capacity, 

based on the Psychological Refractory Period (PRP) effect analogous to the refrac-
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tory period of a single neuron. Broadbent [19] described this effect in terms of the 

second stimulus queueing up while the channel was busy processing the first stim

ulus. However, it has been argued that similar reaction time delays also occurred 

for the first stimulus [44]. Two kinds of information channel of limited capacity are 

introduced éis follows: 

(1) Single-channel capacity: Broadbent's [19] single-channel hypothesis was a fore

runner of modern information processing theories, especially those which make use 

of limited central resources. This single-channel, limited-capacity system processes 

stimuli in a strictly serial manner. Incoming stimuli compete for resources in the 

sense that they compete for access to the channel in this model, with the capacity 

of the channel defined in terms of the rate of information transmission. Reaction 

time(i?^)^ is a linear function of the log2 P with definition of this single-channel ca

pacity by Hick [45] and Hyman [47]. 

(2) Multi-channel capacity: With multichannel capacity, the appropriate model of 

the human in software systems is a system with a number of particular purpose pro

cessors and stores operating in parallel. Parallel processing is possible when tasks use 

different processors, but sharing of a particular processor is not possible. Another re

sult is that capacity interference alone is not sufficient to account for the phenomena 

associated with dual-task performance. 

^Hick's law: RT = a + bT{s,r), reaction time is a linear function of stimulus and 
response 
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Time-shared systems 

Time-shared systems involve the simultaneous performance of two separate and 

independent tasks. The software system operator is required to perform his or her 

tasks in operating systems together with his or her best ability. Performance on the 

primary task is required to be constant and capacity as the primary task varies in 

difficulty is mapped by performance on the secondary task. As the primary task 

demands increasing capacity, secondary task performance is progressively degraded. 

The basic prediction of the limited-channel model is an interaction between task 

difficulty, and whether the primary task is performed alone or in concert with the 

secondary task: The drop in performance is greater for the difficult primary task 

than for the relatively easy primary task. This prediction is equally valid when only 

dual-task performance is considered, and both primary and secondary tasks have two 

levels(i.e., easy and difficult Kantowitz et al. [53], Kantowitz, [52]). 

Allport et al. [2] reported that the human operator was better represented by 

several independent channels that operated in parallel, rather than by only a single 

channel. 

Kantowitz et al. [53] examined an intermediate hybrid model (Figure 2.6) that 

is less parsimonious than the limited capacity single channel but more parsimonious 

that n independent channels. A hybrid model is one that is neither strictly serial 

or strictly parallel but contains both kinds of processing in its system architecture. 

Figure 2.6 represents a hybrid model to explain systems in time-sharing experiments 

[53]. They combined a motor-tapping task with a digit-naming task. 
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Knowledge-Based System Interaction 

It simulates human reasoning about a problem domain, rather than simulating 

the domain itself. This distinguishes knowledge-based systems from more familiar 

programs that involve mathematical modeling. This is not to say that the program 

is a faithful psychological model of the knowledge-based, merely that the focus is upon 

emulating an knowledge-based problem-solving, that is, performing the relevant tasks 

as well as, or better than, the expert. 

It performs reasoning over representations of human knowledge, in addition to 

doing numerical calculations or data retrieval. The knowledge in the program is 

normally expressed in some special purpose language and kept separate from the 

code that performs the reasoning. These distinct program modules are referred to as 

the knowledge-base and the inference engine, respectively. 

It solves problems by heuristic or approximate methods which, unlike algorithmic 

solutions, are not guaranteed to succeed. A heuristic is essentially a rule of thumb 

which encodes a piece of knowledge about how to solve problems in some domain. 

Such methods are approximate in the sense that they do not require perfect data 

and the solutions derived by the system may be proposed with varying degrees of 

certainty. 

Knowledge-based interaction systems required by an adaptive human-

software interface 

There are seven adaptive system interfaces in knowledge-based interaction be

tween the human and software system. 

(1) Knowledge of the programmer; that is, expertise with the system; 
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(2) Knowledge of the human-software interaction; that is, modalities of interaction 

and dialogue management; 

(3) Knowledge of the operation/domain; that is, the ultimate purpose of the problem 

area and its goals; 

(4) Knowledge of the human-software system; that is, the characteristics of the 

human-software interaction systems; and 

(5) Knowledge of the programmer and program designer: A human operator model, 

combining information about the user's knowledge, capabilities, and preferences, 

should reflect the content of the operator's knowledge of the human-software sys

tem and the operation domain as well as their individual cognitive strengths and 

limitations. Major issues in building the programmer/designer model: (a) determin

ing what information should be incorporated into the programmer/designer model; 

(b) determining how this model should be configured. Cognitive psychology issues 

play a major role in modeling the programmer because there are individual differences 

among software engineers with knowledge and experience. There are three techniques 

to construct and modify programmer models: (a) Classifying programmers as novices 

and update their status to experts as they demonstrate more proficiency; (b) Compar

ing the programmer's knowledge to a domain expert's knowledge; (c) Characterizing 

the programmer by a set of stereotypical traits. 

(6) Knowledge of human-software interaction: An adaptive human-software interface 

should provide help that is appropriate to the context as well as to the particular 

operator. It should be able to track the recent human-software dialogue. This re

quires some knowledge of how interactions are structured and what information may 
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be implicit in them. Natural language^ interfaces are inherently more adaptive in 

that they do not require learning any artificial command syntax for communicating 

with human-software interface systems. The following criteria for natural language 

systems are usable and friendly to novices and experts [60] : 

(a) Syntactic coverage; 

(b) Task-oriented semantic coverage; 

(c) Flexibility in the presence of extra-grammaticality; 

(d) Semantic resilience; 

(e) User friendliness; 

(f) Transportability. 

(7) Knowledge of the task/domain; A programmer is trying to accomplish his task. 

There may be several levels between the immediate task and the overall programming 

task. If a human-software interface system is to be maximally supportive it must be 

able to assist the software engineer in achieving programming tasks. The system 

must' be able to infer the information from the human-software interaction, (a) Task 

modeling: Although many adaptive human-software interface systems use a model of 

the programmer to gauge the amount and the type of adaptation, there are several 

systems that are not based upon user models. The adaptation is based upon the 

human-software system's performance on the task, (b) Task detection and plan 

inference: An adaptive human-software interface must know what the user wants to 

accomplish. There are two possible conditions under which plan recognition occurs. 

First, all possible plans of the programmer are known in the case of limited task 

domain. Second, all possible plans are not known in the case of any reasonably 

^Natural language refers to the software engineer's native language. 
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complex system [80]. 

Fuzzy set application to knowledge-based human-software interaction 

The common-cause error in human-software interaction can be controlled by the 

fuzzy set theory. Classical control theory provides a good design solution to linear 

single input, single output system problems. The fuzzy set theory, as a modern control 

theory, has also proven to be very useful for solving common-cause problems of linear 

multi-variable system that are of a deterministic or stochastic nature using state space 

space or frequency response methods in human-software interaction [106]. Common-

cause human domain error normally are regulated by human software designer who 

adjusts the control mechanism. The following problems should be overcome to have 

an accurate description of the common-cause human domain error control strategy 

of an software engineer [54]. 

(1) The control mechanism of a software designer are often erratic, inconsistent or 

subject to error due to the imprecise nature of human information processes, and 

hence the programmer's control mechanism is difficult to interpret accurately. 

(2) The software engineer frequently responds not only to single measurements, but 

to complex patterns of measurements and observations of unmeasurable variables, 

such as consistency and complexity, etc. These observations are then categorized 

subjectively and used as a basis for control mechanism. 

In the approach for fuzzy models of human behavior aspects problem solving. 

Rouse [97] studied following three basic approaches, such as, the pattern recognition 

approach, the structured approach, and the rule-based approach. 

(1) The pattern recognition approach: This approach has been used as a basis for 
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modeling the medical diagnosis process of a physician [34]. In this model for human-

software interaction, the system designer directly transforms a three dimensional 

common-cause failure error attributes into membership values for the fuzzy set of 

possible solutions. The basic assumption is that the human/design has a repertoire 

of stored patterns that is sufficient for producing acceptable solutions to the common 

causes that are encountered. 

(2) The structured approach: This approach was introduced by Rouse [99] in model

ing human decision making in fault diagnosis tasks using fuzzy set theory. It concerns 

the common cause human error solver as using the structure of the common causes 

problem to infer membership in the fuzzy set of possible solutions. Thus, given the 

symptoms of a problem and network of transition relationship diagram, a fuzzy set 

of possible solutions is defined as those problem elements that have a path to all 

of the symptoms. The set is fuzzy in which the programmer may not have precise 

knowledge of the existence or lack of a path from each element to each symptom. 

The fuzzy fault diagnosis model was used to predict the number of actions that were 

required before a correct solution could be found. Results from common-cause error 

analysis were presented for simulated fault diagnosis tasks involving common-cause 

error control mechanism. It is very difficult for programmer to utilize information 

about elements which had not failed, and also to model a subject that makes many 

mistakes. 

(3) Rule-based approach: A fuzzy rule-based model of human problem solving was 

development by Rouse et al [100]. This approach involves the use of rules that evoke 

actions which lead the software designer towards a human-software interaction solu

tion. The model of Rouse and Hunt was designed to search the problem space in both 
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a symptomatic and topographic mode. The symptomatic search is based on the state 

variables in the system, where as the topographic search relies more on the functional 

structure of the system. Fundamentally the model attempts to choose an appropri

ate action based on the observed symptoms of the malfunction. If the model fails to 

recognize a familiar pattern then action is taken based on the functional topography 

of the malfunctioning interaction system. 

Software Development System 

There are five procedural phases in software development; requirement specifi

cation, software systems design, program coding, software systems validation, and 

fault-tolerant software systems. As shown in Figure 2.7, there are several factors to 

be considered in each phase. 

Figure 2.8 represents three recovery zones for each software development proce

dural phase associated with four occasional common-cause failure domains. 

Specifications of requirements and tasks 

This first phase of software development defines the requirements and specifica

tions for an acceptable solution to the problem. Requirements analysis focuses on the 

interface between the software and the user who needs to operate it. This task for the 

software development involves what the program is supposed to do; what real software 

project problems it is to solve, the inputs and the outputs of the program, and the 

available human, hardware, and operating software resources. These requirements 

then need to be translated into a set of explicit specifications for a software project. 

Requirement partitioning has been defined as the synthesis or grouping of elements of 
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Figure 2.7; Software Development and System Interactions 
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decomposition according to a well-defined criteria into a logical programming space. 

It is more well related to nonfunctional than to functional requirements. 

Defining specification requirements gives both the user and the software engi

neer a concrete description of the system. Included are the desired operating charac

teristics of executive program, execution speed, portability, modifiability, size, etc.. 

Allocation of specifications is the activity of mapping the logical programming space 

onto physical software resources. Specifications enable test data to be developed 

early where the performance of the human-software system can be tested objectively 

because the test data will not be influenced by the implementation. 

There are four automatic analysis techniques of specification requirements for 

software development: 

(1) SADT®: SADT is a structural analysis and design technique used as a tool for sys

tem definition, software requirements analysis, and system/software design. It con

sists of procedures that allow the analyst to decompose software function; a graphical 

notation, the SADT actigram and datagram, that communicates the relationships of 

information to function within software; and project control guidelines for applying 

the methodology [101]. 

(2) S REM : S REM is an automated requirements analysis tool that makes use of a 

Requirements Statement Language(RSL) to describe "elements, attributes, relation

ships and structures." These RSL primitives are combined with narrative information 

to form the detail of a requirements specification [1]. 

(3) PSL/PSA^: This technique provides an analyst with capabilities that include: 

®SADT:Structured Analysis and Design Technique 
^SREM:Software Requirement Engineering Methodology 
^PSL/PSA: Problem Statement Language/Problem Statement Analyzer 
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(a) description of information systems regardless of application area; (b) creation of 

a data base containing description for the information system; (c) addition, deletion, 

and modification of descriptors; and (d) production of formatted documentation and 

a variety of reports on the specification [111]. 

(4) TAGS^: This is composed of three key components: (a) a specification language 

called Input/Output Requirements Language(IORL); (b) a set of software tools for 

requirements analysis and lORL processing; and (c) an underlying TAGS method

ology. Unlike S REM and PSL/PSA, the TAGS specification language was designed 

to accommodate both graphical and textual representations created by the analyst 

using an interactive tool [105]. 

Software development system design 

The main goal of program design is to produce a cost effective design which 

satisfies its intended use. It may be assumed that this goal is to produce a design 

with low residual error content. In certain high-reliability applications this is not 

sufficient, and various techniques for self-checking and limiting the effect of an error 

are needed. Design is a very human-directed and highly interactive process in which 

the analyst uses a mixture of knowledge and intuition to generate initial approaches 

or configurations. There are four modifying descriptions in software development 

system design; 

(1) Seven factors for system development can be considered in software design: 

(a) Safety 

(b) Reliability 

^TAGS: Technology for the Automated Generation of System 
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(c) Fault Tolerance 

(d) Safe shutdown and rapid recovery 

(e) Maintainability 

(f) Testability 

(g) Extendability 

(2) There are some important software quality measures needed to codify and reduce 

by analysis, experiment, or quantitative estimates in a software project. They are: 

the complexity or the problem, the required algorithm, the processing time, and the 

data-representation and memory requirements. Estimates of complexity are very 

useful to the programmer in the early design stage. Since some models focus on the 

testability of software, these may last to be useful in the design phase. 

(3) Synthesis versus iteration: In synthesis, a clear-cut and straightforward algorithm 

can be used to evolve a design which exactly meets the requirement specifications. 

On the other hand, the iterative design process can be begun by assuming that an 

analysis technique exists. Then, one can propose intuitively some hypothetical design 

and subject it to analysis. A true synthesis procedure is a one-shot, open-loop design. 

However, because one must always be on guard for human error, the design is checked. 

An iterative design is generally checked several times. 

(4) Fall-back from software failure; The principle of software fall-back is to bypass the 

malfunctioning task when a problem is detected[43]. This allows continuous operation 

of remaining tasks without shutting down the entire system. Problem errors occur 

more often in less important tasks than in those of major importance. When the less 

important program is bypassed, there is little effect on overall system performance 

because only some of the functions are lost. There are some considerations for fall
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back from failure: 

Manual control and changeover processing 

Changeover from Semiautomatic Control 

Changeover from manual control 

Program coding 

Software development actually consists of two complementary but quite different 

processes: the selection and design of algorithms, and the coding of those algorithms 

into computer languages. 

Coding is the process of translating an algorithm into a form mutually under

stood by people and computers. However, while nearly all software engineers are 

also skilled at coding, all coders are not skilled in design. Algorithmic design and 

selection is a creative process far more akin to creative writing than to indexing, and 

just as most persons can be taught to index or code, only a few prove to have real 

talent at creative writing or software development. The following steps are provided 

for programming coding: 

Step (1) Identify the output 

Step (2) Define the logical data structure 

Step (3) Define the physical database 

Step (4) Design the program structure 

Step (5) Coding. 
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System validation of human-software interaction 

A software engineering mistake is often made when implementing a verification 

and validation task that simply duplicates the testing program. Validation should be 

planned and initiated at the outset of the development program. Even though the 

actual program testing activity cannot be initiated until end item products become 

available, the testing of requirements and specifications and the design of software test 

cases and test tools should proceed concurrently with early phases of the development 

program. 

A fiowgraph analyzer is capable of detecting references to variables which are 

never initialized or never reused after receiving a value; these usually indicate errors. 

Other methods such as Proofreading, Run-time test, Simulation test can be applied 

to validating the program. Conway [24] described eight different meanings for a 

correct program in this phase: 

(1) A program contains no syntactic error. 

(2) A program contains no compilation errors or failures during program execution. 

(3) There exist test data for which the program gives correct answers. 

(4) For typical sets of test data, the program gives correct answers. 

(5) For difficult sets of test data, the program gives correct answers. 

(6) For all possible sets of data which are valid with respect to the problem 

specification, the program gives correct answers. 

(7) For all possible sets of valid test data and all likely conditions of erroneous 

input, the program gives correct answers. 

(8) For all possible input, the program gives correct answers. 
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Fault-tolerant human-software interaction system 

There are two cases for a fault-tolerant system in human-software interaction. 

One is a failure in a fault-tolerant system which includes design features countered the 

effects of system faults. It is called system fault-tolerant in accordance with the faults 

they countered. In interpreting a failure for a fault-tolerant system, one can consider 

variations from requirements of external and not internal behavior. Therefore, an 

internal component failure may be counteracted by fault-tolerant features of the 

system. In other cases, a malfunction of a fault-tolerant feature that affects the 

program output will represent a system failure. 

Systems with their components can be regarded as performing operations in 

order to provide responses to requests. B. Randell [89] discussed the idealized fault-

tolerant component with three categorical groups of existing faults within a system 

from the viewpoint of a given component: 

(1) faults within the component itself, 

(2) faults in the sub-components or co-existing components that a component makes 

use of, and 

(3) faulty requests made of the component by its environment, i.e. the enclosing 

component or the co-existing components with which it is interacting. 

Randell's concentration is on three forms of structuring [89]: 

(1) idealized fault-tolerant components: provide a means of system structuring which 

makes it easy to identify those parts of a system that have specific responsibilities 

for coping with given faults, 

(2) recursive structuring scheme: involves using complete systems as the basic ideal

ized fault-tolerant components of a distributed component system whose functionality 
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matches that of its component systems, 

(3) atomic action: provides a means of structuring both forward and backward 

recovery in distributed systems. 
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CHAPTER 3. COMMON CAUSE ERROR AND THE HUMAN 

RELIABILITY FUNCTION 

The human reliability function is concerned with human error, common-cause 

failure, and common-cause effect in human-software interaction [6] [28] [65]. Hu

man stress, human error estimates and human error rate prediction techniques are 

discussed in this chapter. 

Human Error and Reliability in Human-Software Interaction 

Human error can be defined as consisting of "any significant deviation from a 

previously established, required or expected standard of human performance, that 

results in unwanted or undesirable time delay, difficulty, problem, trouble, incident, 

malfunction, or failure [84]." In real world situations where discussions of precisely 

what is or is not a common-cause human error are of less importance than what can 

be done to prevent them, the operational definition may be restricted to those errors 

which: (1) occur within a particular set of activities, (2) are of some significance or 

criticality to the primary task under consideration, (3) involve a human action of 

commission or omission, and (4) could have been prevented through some feasible 

course of action [28]. 

A failure effect can be explained as the consequences a failure mode has on the 
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operations, tasks, function or status of a system. Failure effects are classified as being 

of local effect, next higher level effect and end effect [4]. 

Generally speaking, sources of common-cause human error in software devel

opment tasks arise from several different factors, such as (1) human psychological 

and physiological stresses, (2) missing, incomplete, or erroneous knowledge, (3) inert 

knowledge (i.e. situation-relevant knowledge is not accessed under the conditions 

in which the task is performed). Stress with human error at a moderate level (see 

Figure 3.1) in some physiological and psychological situations is useful in increasing 

human effectiveness to its optimal level [28]. Obviously an over-stressed person will 

have a higher probability of making an error. In certain circumstances, there may 

be undesirable psychological or physiological tensions from work activities or envi

ronmental conditions that are beyond the reasonable or acceptable limits. In such 

cases stress and strain arise. Stress refers to some undesirable condition, circum

stance, task, or other factor that impinges upon the individual, and strain refers to 

the effects of the stress. However, all common-cause human errors are not from these 

phenomena. There are many other of causal factors affecting software-task failure in 

human-software interaction. 

Stress characteristics and stress check list factors in human-software in

teraction 

There are at least eleven identified stress characteristics of a programmer in 

human-software interaction systems [71]. These are associated with the following 

situations: 

(1) Information feedback to the programmer is inadequate for the determination of 
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correctness of his or her actions. 

(2) The programmer is required to make comparisons of two or more displays quickly. 

(3) Lack of knowledge or background for problem solving, understanding, and design 

causes pressure for lower level programmer. 

(4) There is a requirement for prolonged design work by the software engineer. 

(5) To perform a task, the sequence of steps needed is very long. 

(6) More than one display are cumbersome to discriminate. 

(7) There is a requirement to program in a manner more user friendly oriented than 

programmer oriented. 

(8) Very competitive and high level intelligent design is requested for multi-version 

redundant software development. 

(9) There is a requirement that decisions have to made on the basis of data collected 

from various sources. 

(10) Other factors, such as short term memory [107], information overload, 

interference, multi-task overload, perceptual overload are present. 

(11) Other demands are present that require or produce : vigilance, signal detection, 

information overload, uncertainty, lack of feedback, or time pressure. 

Another list of stress inducing general environmental situations contains the 

following [8]: 

(1) Having to work with programmers who have unpredictable temperaments; 

(2) Being unhappy with the present job or program; 

(3) Gaps in knowledge or familiarity with computer language, operating system, 

and hardware; 

(4) Possibility of redundancy at work; 
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(5) Poor chances for promotion at work; 

(6) Lacking the expertise to perform the required job; 

(7) Poor health or physical; 

(8) Performing under extremely tight time pressures; 

(9) Having to take work home most of the time in order to meet deadlines; 

(10) Excessive demands from superiors at work; 

(11) Having to write a program below one's ability and experience. 

Rook's model of human error occurrence 

Rook [96] developed a mathematical model of error occurrence. This model can 

be used to compute the total probability of no functional failures over Z independent 

types of tasks. It requires the following assumptions: 

(1) A number of different tasks involve a miss-function. 

(2) In achieving the mission function, each task may be carried out more than once. 

In addition, one or more error modes may be associated with a task. 

(3) The error modes are independent. 

(4) The entire mission function may or may not fail totally due to an error. 

The occurrence probability of a functional failure resulting from the &th error 

mode of the ith operational task is given as 

% = • Qki 

where 

the probability that the ith task arises in an error of the kth. mode 

Qfif the conditional probability that if the mode k error of the ith operational type 

occurs it will result in total function failure. 
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Human error estimates and reliability function 

The basic unit of human reliability can be defined as the Human Error Prob-

ability(HEP), which is the probability of on error happening during some specified 

human task. HEP is defined as the number of errors of a specified type divided by 

the total number of chances for that error to occur [51]. 

Human error probability estimates can be provided per time rate and per demand 

rate, as follows [39]: 

" . - ê  
where 

Pf^^: the probability that when a specified task is carried out a human error will 

occur 

En- the total number of known errors of a given type 

Opg : the total number of opportunities for the error. 

A generalized human performance reliability function[5], [94], [95] is described 

with a time dependent human error(hazard) rate, He{t) as; 

where 

human performance reliability at time t 

The human performance correctability function for continuous tasks is concerned 

with the human capability to correct self-generated human errors[94]. That function 

is defined by the probability that an error will be corrected in time t subject to a 
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stress constraint associated with the task and its environment: 

PQ{T)= 1 - e" rc(() 

where 

rc{t): the time dependent rate at which tasks are corrected, or 

P c { t ) = f m  

where 

f(t); the probability distribution function associated with the time-to-correction com

pletion. 

Technique for Human Error Rate Prediction (THERP) 

This methodology which was first established by Swain at Sandia Laboratories 

[110] has been developed to a level where it is regarded as the most powerful and 

systeirnatic methodology for the quantification of human reliability. The basic tool 

used in THERP is the probability tree diagram (Figure 3.2^). Human error 

that may be defined as deviations from assigned tasks often appears as basic events 

in fault trees. A THERP analysis initializes by decomposing human tasks into a 

sequence of unit activities. Possible deviations are postulated for each unit activity. 

A Human Reliability Analysis (HRA) event tree is then used to visualize the normal 

sequence of unit activities together with the deviations. The event tree thus becomes 

a collection of chronologically associated human tasks. Each sub-branch of event tree 

represents either normal execution of a unit activity or an omission or a commission 

^The probability of selecting the correct ignition command is t. 
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Figure 3.2: Probability Tree Diagram for a Programming Task. 
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error related to the activity. Human error appearing as a basic event in a fault tree 

can be defined by a subset of terminal nodes of the event tree. 

The occurrence probability of the basic overall event is calculated after prob

abilities are assigned to the branches of the event tree. Probability estimates on 

the branches must reflect performance shaping factors specific to human operating 

systems, and other boundary conditions. Events described by branches can be statis

tically dependent. The probability of a correct outcome C, completing a programming 

task, is the product of the two probabilities in the tree [43]: 

P r { C ) = t { s \ t ) .  

The probability of failure can be calculated as 

P r { F )  =  t { S \ t )  +  T { s \ T )  +  T { S \ T )  

Where 

t :  the probability of successfully locating the correct command 

T: the probability of selecting the wrong command 

s  I t :  the probability of a successful one-trial run given that the proper command 

was selected 

5 1 T: the probability that the software fails to run again given that you have the 

proper command was selected. 

The outputs of the THERP model are estimates of correct or failure probabilities 

for human behaviors and tasks. 
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Human-software systems reliability 

Here, human-software reliability can be defined as the probability of accom

plishing a task successfully by humans at any required stage in a human-software 

interaction within a specified minimum time limit. 

Software task reliability prediction procedure: The main objective of 

the procedure of software task reliability prediction is to obtain subtask reliability 

estimates for which no previous reliability data is available [30]. To obtain a total 

task estimate, subtask estimates may be combined. The following six steps are from 

this method: 

(1) Object Orientation: The tasks are to be performed when a complete operation is 

represented by each task. A task is composed of a series of subtasks. 

(2) Subtask identification; Once the tasks to be performed are identified then the 

next logical step is to identify the subtasks of each task. 

(3) Concurrent Design: Simultaneous design is provided for the software product and 

development process in human-software interaction and the system task of software 

development. 

(4) Obtaining empirical data: This type of subtask data may be available from a 

number of sources such as in-house operation, experimental literature, laboratory, 

and so on. 

(5) Estimating task performance: This is considered along with rating each subtask 

in accordance with its potential for error or level of difficulty. A scale from 1 to 10 

points corresponding from least error to most error can be used to rate a subtask. 

This kind of rating is purely based on individual judgement. 

(6) Analyzing the task performance error rate: To get a subtask reliability estimate. 
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the empirical data is expressed and the judged in comparison with a straight line. 

The line is tested for the goodness of fit. This line can be used to estimate subtask 

reliability. 

(7) Determining each task reliability: The total task reliability is given by the product 

of subtask reliabilities taken from the equation of the straight line. 

Common Cause Failures in Human-Software Interactions 

Common-cause failures, which were overlooked 20 years ago, have been receiving 

wide attention especially in the software systems area. This is because the assumption 

of statistically-independent failures of redundant systems is easily violated in the case 

of human-software interaction. Common-cause failures concern the possibility that 

system or mission failure involving multi system component failure may occur due 

to a common cause , i.e. the loss during some critical period of multiple, redundant 

systems, component functions, due to an underlying common control mechanism, 

fault or phenomena. 

A related study for common-cause failure initially, a small research group on Rare 

Event was to investigate and organize the program of work based on the findings of 

the task force in the following areas: 

- rare event data collection and analysis; 

- common mode failure analysis; 

- human error analysis and quantification; 

- statistics and decision theories applicable to rare events; 

- inter disciplinary communication and tutorial programs on rare events programs 

and their solution. 
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I. A. Watson described that the analysis of common-cause may be complicated 

because of various considerations including [116]: 

(1) recognition of many possible causes of common-cause failure and their identifica

tion; 

(2) selection of models to be used in the quantification of system reliability; 

(3) the availability of historical data; 

(4) the comparative rarity of common-cause failure. 

There is a different situation in a human-software system compared with a hard

ware system. A failure in one transaction processor(TP) software component would 

also occur in another since they are identical [76]. Both copies contain identical faults. 

Since the software components are not independent of each other in regard to fail

ure behavior, software redundancy does not improve reliability. This is a commonly 

occurring and very important point for software components. A common-cause fail

ure in the software development processing system is any instance where multiple 

components malfunction due to a single cause. 

At first, in modeling common cause failures in software development, it is desir

able to introduce the initiating events physically. An initiating occurrence is to be 

regarded as an external event such as a flood, earthquake, power outage, or fire which 

can cause the failure of several components simultaneously, due to the environmental 

stresses occasioned by its occurrence. 

Also simultaneously, another common cause failure of several components occurs 

when one component has several functions, so that its failure prevents each of these 

individual functions. 

Another possible common cause is the existence of standby components which 
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are called into use when specified components have failed. The conditional waiting 

time until a failure in the standby component is observed is different from the waiting 

time until failure if it were in non-standby usage. 

The following are some causes of common-cause failures in general systems [30]: 

(1) External abnormal environments: dust/dirt, temperature, humidity/moisture, 

vibrations. 

(2) Equipment failure resulting from some unforseen external event: fires, floods, 

earthquakes, tornadoes. 

(3) Design deficiencies: During the design phase of the system some faults may have 

been overlooked. For example, the interdependence between electrical and mechani

cal items of a redundant system may have been overlooked during the design phase 

of a system. 

(4) Operation and maintenance errors: Occurrence of these errors may be due to im

proper maintenance, carelessness, improper calibration, the same person performing 

maintenance on all redundant units repeating the same mistake on all of them, etc. 

(5) Multiple items purchased from the same manufacturer: All these items may have 

same manufacturing defects. 

(6) Common external power source to redundant units. 

(7) Functional deficiency: misunderstanding of process variable behavior, inadequacy 

of designed protective action, inappropriate instrumentation, etc. 

Common-cause failure analysis of redundant systems 

There is a method for incorporating common-cause failure in a redundant net

work analysis of the human-software processing system [30]. There is an assumption 
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that network units are identical and independent, and also that the same portion of 

common-cause failures is associated with other redundant network components. 

It is assumed in the common-cause failure model that 

7 = fraction of component or system failures that are common-cause 

Au = A^ -1- Ac 

where 

Au: the component constant failure rate 

Xf the component independent constant failure rate 

Ac: the component or system constant common-cause failure rate 

Since 

Ac 
7 = T" 

A U  

then 

Ac = 7Au 

By arranging these equations, we get 

A^ = (1-7)AU 

Parallel Component Network Systems: A series-parallel component net

work system model in multi-version software is illustrated in Figure 3.3. This is 

actually a modified parallel network system to incorporate common-cause failures. 

The parallel portion of the network represents n independent failure components 

and the single component in series is a hypothetical component representing system 

common-cause failures [76]. The failure of the hypothetical common-cause failure 

component will cause system failure. 
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The human-software reliability, Rfig, of the human-software processing network 

given in Figure 3.3 is 

R h s  ̂  [ I  -  { I  -  R i r ] R c  

where 

Rf. the independent failure mode reliability of a component 

Re', the common-cause failure mode system reliability 

n: the number of identical components 

The time dependent reliability of the ith independent component with constant 

failure rate is 

Riit) = e-^i' 

Similarly, the hypothetical common-cause failure component reliability is 

R c  =  

By substituting variables in all of these equations 

Rhs{t) = [1 - (1 -

To calculate the mean time to failure(MTTF), R}ig{t) is integrated over the time 

interval [0, oo] 

The common-cause principle and statistical dependence are described in Appendix 

A. 
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CHAPTER 4. A COMMON CAUSE MODEL AND 

EXPERIMENTAL DESIGN IN HUMAN-SOFTWARE INTERACTION 

Common-Cause Model and Function 

Common-cause model 

The common-cause model can be used to define internal common-cause human-

based error and to develop a comrhon-cause error control mechanism for human-

software interaction. It can be explained in terms of four schematic and systematic 

design stages, as illustrated in Figure 4.1. The stages are as follows: 

(1) Human-software interaction components: These system components are the basic 

elements and factors in human-software interaction. They are: the human working 

as a software engineer, software as a operating system, and hardware as a system 

work station. The common-cause error occurs in system interactions involving fail

ures among these system components. 

(2) Common-cause error protocol: Common-cause error protocol is the actual loca

tion and identification of common-cause error attributed to a common-cause eifect in 

a redundant system of multi-version software development. It is distinguished within 

a given common-cause error mode by its individual identification, by a pattern recog

nition, and by a behavior domain. 
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(3) Common-cause error function: This is the function of common-cause error re

vealed in the existence and the performance allocation of each common-cause error 

mode using an evaluation typically by three variables such as frequency or error oc

currence, error correction time, and point of error occurrence in time. 

(4) Common-cause analysis, representation, and system redesign: This stage con

sists of the analysis and representation of common-cause error in human-software 

interaction. Several analytical methods have been provided to define common-cause 

human domain error, and to redesign the system interaction with representational 

results and prevention schemes involved with system development productivity, and 

common-cause error control mechanisms. 

Common-cause function 

The common-cause function is shown in the existence and in performance allo

cation of common-cause failure with its identification(/^), pattern recognition(Py), 

and bëhavior domain(B^) of common-cause error mode. Each allocated common-

cause error mode is evaluated by performance variables using common-cause er

ror frequencyj j^), error correction time(Cj- j f.), point of error occurrence in 

time(0^ J during the software development period. These are illustrated by 

Figure 4.2. The common-cause function, Cy is: 

subject to 

= 1,0 < /^ < 1 

^ P j  =  1 , 0  < P j <  I  
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Figure 4.1 : Schematic Design Stages of the Common-Cause Model 
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Figure 4.2: Three Common-Cause Error Modes and Evaluation Variables 
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= 

Ef^2 = , 0 < F ; < 1  

E^i = , 0 < F j  < 1  

E^t = , 0 < f & < 1  

Eq = 

, 0 < C ^ < 1  

Ec& = 

EOz = , 0 < ( %  < 1  

EO; = 

V
I c
T

 V
I o

 

EOt  =  , 0 < 0 f c < l  

where 

If programming identification error mode 

Pj i  reasoning pattern error mode 

Bj^: behavior domain error modes 

Fj- j f,: Common-cause error frequency in each mode 

Q j Common-cause error correction time in each mode 

Oi j^y. Common-cause error occurrence time zone in each mode. 

The common-cause function consists of these three reasoning factors of common-

cause error mode, identification, pattern recognition, and behavior domain of common-

cause error mode. Certain common-cause errors have these three different axes of 

reasoning modes, with which can be evaluated by the three subjects' performance 

variables, frequency, correction time, and point of occurrence in time, using the ap

propriate portion of the total amount of collected data relating to all errors. 
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Consideration factors and environmental conditions of human-software in

teractions 

There are some modifying factors and environmental conditions for the three 

components in human-software interaction. 

• The human side of the interaction factors including: 

Human availability: manning and working load levels 

Human capability: skill and knowledge levels 

Human performance: completion of required tasks 

Human productivity: quantity and quality produced per unit time 

Human safety, biomechanics, work physiology 

• The software side of the interaction factors including: 

Specification of Requirements: 

Design: software product design, process design 

User-friendliness: human oriented, easy use, objective orientation 

Interface with hardware: hardware capacity with software size 

Software productivity: efficiency, utilization, cost, interactions 

• The hardware side of the interaction factors including: 

Information displays: the display format, display device adaptation to human 

1 cmergonomics 

Display characteristics: symbol size, shape, color, density, etc. 

Data organization and output: the architecture producing hierarchical levels 

1 cmof data specificity 

Communications: command mode types, error messages, prompts, alerts, 

1 cm queries, etc. 
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Load procedures: task sequences, decision making and its principles 

Data processing: data entry, manipulation, designation, data flow 

System documentation: hard copy manuals and aids 

Common-Cause Error Protocol and Common-Cause Factors 

There are three features of internal common-causes, previously introduced, that 

can be used in determining the identification of programming error modes, pat

tern recognition, and behavioral error categories of common-cause errors in human-

software interaction. They are: identification of common-cause error protocol(/j), 

reasoning pattern error modes(Pj), and behavior domain error modes(Bj^). 

Identification of common-cause error protocol 

There are eight identification modes(:/^) categories of typical human-based pro

gramming error from common-cause error protocols, which are used in the determi

nation of the common-cause error that caused the failure. Each error protocol mode 

means the actual location of common-cause error and contributes to the common-

cause effect at each stage of human-software interaction for multi-version redundant 

software development system [112]. 

System design and requirement errors: 

Design not-responsive to requirements 

Problem definition error 

Requirement specification and task complexity error 

Design specification, inappropriate methodology 
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/g Variable setting and program handling errors: 

File not rewound before reading 

Data not initialization not done 

Program initialization, and dimensional declaration 

Variable setting and indexing error 

Variable referred to by the wrong name 

Incorrect variable type 

Subscripting error 

/g Program input and data base error: 

Invalid input read from correct file 

Input read from incorrect file or subroutine 

Incorrect input format, statement referenced 

Data base problem, and data manipulation error 

Data sorted incorrectly 

End of file encountered prematurely 

1^ Computation based errors: 

Incorrect operand in equation 

Incorrect use of parenthesis 

Sign convention error 

Units or data conversion error 

Computation produces an over/under flow 

Incorrect/inaccurate equation used 

Precision loss due to mixed mode 

Missing computation 
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Rounding or truncation error 

/g Program logic errors: 

Incorrect operand in logical expression 

Logic activities out of sequence 

Wrong variable being checked 

Missing logic or condition tests 

Too many/few statements in loop 

Loop iterated incorrect number of times (including endless loop) 

Duplicate logic 

IQ Human-software system interface errors: 

Wrong subroutine called or nonexistent subroutine call 

Call to subroutine put in wrong place 

Subroutine arguments not consistent in type, units, order, etc. 

Software/data base interface error 

Software user interface error 

Software/software interface error 

System configuration error 

Software not compatible with project standards 

Ij System operation errors: 

Operating system error 

Operating command error 

Interactions problems with hardware system 

Test execution error 

Compilation error 
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Operating-user misunderstanding error 

Configuration control error 

/g Output and output formatting errors: 

Data written in wrong file and allocation error 

Data base according to the wrong format statement 

Data written in wrong format 

Data written with wrong carriage control 

Incomplete or missing output 

Output field size too small 

Line count, spacing, or page eject problem 

Output garbled or misleading 

Pattern recognition error modes 

Common-cause reasoning patterns(:Pj) can be recognized with causal character

istics which implicate the identical elements of reason, perception, control mechanism, 

occurrence processing, stimulus response requirement, etc. Each identical property 

or reason matches a pattern recognition for the common-cause human error mode 

[121] [33]. 

Pi Knowledge deficiency: There is a lack of knowledge based on the hardware sys

tem, operating system, human-software interface, field of specific requirements or 

problem solving methodology. 

^2 Design deficiency: During the design phase of the human-software interaction 

system, some common-cause errors have been overlooked. These are in preliminary 
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and detailed design work, the design reviews, definition of variables and attributes, 

and all work done prior to coding. For example, the interdependence between system 

requirements and output results, or between logical units and data flow of program

ming have been overlooked during the design phase of a system. 

Operation and maintenance errors: Occurrence of these common-cause errors may 

be due to improper maintenance, carelessness, or improper calibration. The same 

program performing maintenance on all redundant units of human-software system 

may repeat the same mistake on all of them. 

P4 Functional deficiency: This includes misunderstanding of process variable behav

ior or specific requirements, inadequacy of designed protective action, inappropriate 

use of methods or instrumentation, or inadequacy of component processing in human-

software interactions. 

P5 Syntax error: These result from expressions which are incorrect in the language 

being used regardless of the context in which they appear (example: ) ( <— ( ) 

). Détection of these errors may be allowed through a relatively superficial analysis 

using grammatical rules of programming language. The programmer may detect and 

correct such errors as a matter of course during the programming process. 

Pg Semantic error: These occur when syntactically correct components of a program 

imply conditions which are untrue or impossible in stated combinations (example: 

UNIT=DISK,UNIT=PUNCH: from IBM JCL DD statement). This statement is 

syntactically correct, but it is impossible to allocate two different physical units to 

a single logical unit. These kinds of errors may require extensive analysis covering 

various interacting aspects and components of a program. 

Pj  Logical error: These produce incorrect results but otherwise cause no obvious 
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malfunction of the program ( example: 1.0 / X + 1.0 is not equal to 1.0 / (X + 

1.0) ). There is probably little which can be done in terms of redesigning compilers 

to aid the programmer in eliminating such errors. These errors show a lack of fit of 

the program to the calculation logic. Also, the program may exactly solve a different 

problem from the one intended. 

Pg Clerical error: These may appear to be either syntactic or semantic errors. They 

are only partly a function of the language used. They result from mispunched, mis

placed, or mis-copied cards, misread program drafts, card shuffling, or incorrect tape 

mounting. 

PQ System complexity: In human-software interaction systems, especially with a 

large-scale programming project, special difficulties arise from system components, 

comparing and contrasting the given requirement, the type and size of computer 

used, selection of proper programming language, memory size and speed required, 

processing time, decomposing the problem into subproblem, functions, models, and 

analysis. This system complexity appears to be judgmental or managerial in nature 

and cannot be easily defined with a lack of relation to the specific tasks of the soft

ware engineer. 

Programming behavior domain error modes 

There is a common-cause error category in terms of the programmer's behavioral 

aspects or point of view (Figure 4.3). Such common-cause error factors may be 

representative of from the human information processing, knowledge based design, 

error control mechanism, and human behavioral science [90] [92]. 
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Figure 4.3: Programming Behavior Error Domain Mode 

B\ Skill-based behavior domain 

Bi A Perception and sensing 

Q Automated sensory-motor reaction systems 

The skill-based behavior domain is a sensory-motor pattern, controlled and auto

mated behavior, controlled by the structure of the adaptive patterns stored in the 

human nervous system. It means that this human error behavior is controlled by 

psychological laws and physiological mechanisms governing the human software pro
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cessing structure and the concept of human behavioral perception and cognition. 

Some characteristics of this skill-based behavior mode are as follows: 

(1) Sensory-motor variability 

(2) Recency and frequency 

(3) Topographic misorientation 

(4) Environmental control signal 

(5) Stereotype mismatching 

(6) Shared schema features 

(7) Adaptation and fine tuning 

B2 Rule-based behavior domain 

B2 Pattern matching and recognition 

B2 Q Representation and association 

B2 (J Working memory and rule interpreter 

The rule-based behavior scheme is a human-software interaction that represents hu

man reasoning with grammatical language structure and logical allocation rules. The 

rule-based systems represent the solution to a problem as a set of rules that specify 

"how some string of symbols may be transformed into other strings of symbols," 

such as a simple form of pattern matching. The transformation of one pattern to 

another in a rule-based language is understood to represent an IF-THEN implication. 

Rules can express associations between state and task. Some characteristics of this 

rule-based behavior mode are as follows: 

(1) Habit robustness 

(2) Typical fixation 

(3) Availability 
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(4) Omission of an isolated function 

(5) Over-simplification 

(6) Alternative mistake 

(7) Over-confidence 

(8) Stereotype recognition 

(9) Matching bias 

Bg Knowledge-based behavior domain 

Bg ^ Task identification and domain principle 

Bg g Object orientation and concurrent design 

Bg (J Integration and optimization 

The knowledge-based behavior scheme is a human behavioral phase interacting with • 

software development concerned with the design and implementation of programs 

which are capable of emulating human cognitive skills such as problem solving, task 

identification with domain principle, object orientation relative to the goal, con

current design of software product and human-software interaction processing, and 

optimal system integration. The structure of the behavior is an evaluation of the 

situation, designing of a proper sequence of actions to achieve the goal. It depends 

upon fundamental knowledge of the processes, functions and anatomical structure 

of the system. Some characteristics of this knowledge-based behavior mode are as 

follows; 

(1) Human variability 

(2) Selectivity 

(3) Adaptation 

(4) Working memory limitation 
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(5) Errors in a causal structure 

(6) Availability 

(7) Matching bias revisited 

(8) Need for human decision making 

(9) Memory cueing/reasoning by analogy 

(10) Incorrect and incomplete knowledge. 

^4 Model-based behavior domain: 

A highly reliable human-software interaction model yields cognitive design base strate

gies to define models for adaptive interface. Communication strategies for basic sys

tem design, information processing, knowledge of components, and systems configu

ration of interface, must be represented explicitly. The following are some adaptive 

concepts of model bcise strategies and design: symbolic and quantitative model, per

formance and cognitive model, static and dynamic model, syntactic and semantic 

model, state-transition model, singular and multiple model, etc. 

Experimental Design and Procedure 

General description of experiment 

This project involves an experiment in the cognitive aspects of software project 

design. Its purpose is to analyze common-causes of software development related 

human error and to identify software design factors contributing to common types 

of error occurring in human-software interaction. The results and analytical proce

dures developed during this study can be applied to improving reliability of software 

development and to providing guidelines for design of software development. 

The main experiment was conducted with ten experts in programming (5 sub
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jects for FORTRAN and 5 subjects for C) who were paid $6 per hour and were each 

given a programming assignment for determining the optimum sequence of machine 

replacement or an optimal inventory system. Three prior pilot experiments were con

ducted previously using 33 undergraduate students and 13 graduate students paid 

$6 per hour. These experiments conducted to data using beginners (level 1: 20 sub

jects), two year experienced subjects (level 2: 13 subjects), and 5-8 year experienced 

programming experts (level 3; 13 subjects) were based on the use of LOTUS-123, 

FORTRAN, or C in a programming application in shop scheduling and inventory 

control, given initial cost and demand data. The reader is referred to Appendix B 

for these programming requirements. 

All materials, such as subject selection, requirement specifications, experimen

tal procedures, data collection sheets, and analytical materials for the experiment 

were prepared and subject life data were gathered. For reliable subject calibration, 

subjects were trained using the actual requirements and overall experimental proce

dures rn an initial session and consultation session. Their skill levels were evaluated 

according to programming experience and knowledge background for requirement 

specifications. All personal data were kept confidential. After three pilot experi

ments, the main experiment was conducted with data collection according to fre

quency of common-cause error occurrence, error correction time, and point of error 

occurrence in time for each of the categorical factors: identification of common-cause 

error mode, pattern recognition of common-cause error reasons, and behavior domain 

of common-cause error mode as explained earlier in this chapter. 

As the programming subject set up and programmed according to the task re

quirements using FORTRAN or C, his/her programming task was observed by the 
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supervisor who pre-classified and designed the common-cause function and common-

cause error factor modes. During the experiment, the contents of common-cause 

human error in subject programming failure were, first, recorded with an explana

tion of the reasons for those failures, correction time, and point of error occurrence 

in time. Then, at the representational interview session held every 30-45 minutes, 

the common-cause error protocol was allocated to each of the common-cause factors, 

identification, pattern recognition, and behavior domains, by directed definition and 

cooperative decision with the supervisor and the subject. Experimental data was 

then validated and analyzed by statistical methods and a geometrical method using 

vector analysis and mapping designed for use in analyzing common-cause errors in 

human-software reliability and interactions. Figure 4.4 shows the experimental 

procedure and design used in this experiment involving human-software interaction 

processing. Results were derived using the following analytical methods: common-

cause error mode data and table, mapping and geometric vector evaluation in hex

ahedron contours, value of common-cause function with simulated rating, historical 

common-cause error recovery time zone, transition relationship diagram, grouping of 

major common-cause factors, and correlation and regression analysis of categorical 

factors. Verification of the results using expert subjects was intended to identify 

clearly those factors related to the design of software development as distinguished 

from conditional factors associated with level of subject, type of language, and type 

of requirement. 

Finally, the characteristics and the properties of common-cause failure modes 

in human-software interaction were determined by the analysis of experimental data 

collected on the ten expert subjects and compared with data from each of the categor-
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ical conditions. Results obtained during the earlier pilot study conducted suggested 

a new cognitive paradigm designed to eliminate and reduce the most common types 

of human domain error related to design of software development. These results have 

direct application in common-cause error control and prevention. 

Problems and hypotheses of experiment 

Defining questions to be answered through the main experiment 

(1) What are the contents and conditions of human-based errors affected by the 

common-cause effect in human-software interaction? 

(2) What are the frequency of common-cause error, error correction time, and point 

of error occurrence in time in each of the common-cause error modes? 

(3) What are the major reasoning common-cause factors for each error recovery time 

zone? 

(4) What is the relationship between the behavior domain of common-cause error 

modê and identification of common-cause error mode, or pattern recognition of er

ror? 

.(5) How much difference in common-cause reasoning factors is there among the cat

egorical conditions of subject such as level of subject, type of language, and type of 

requirement? 

(6) What are the alternative results with the different rated simulations? 

Hypothesis More qualified expert subjects in software development will 

give a better performance, but the major portion of common-cause error properties in 

human-software interactions will not differ significantly among all subjects who have 

different categorical conditions such as level of programming expertise, knowledge of 
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programming language, and type of task requirements. 

Procedure and method of experiment 

Variables and control factors of the experiment The chosen experiment 

designed to study the human aspects of software development included the following: 

(1) Dependent variables: 

Common-cause error modes: 

Common-cause error identification mode (/^) 

Reasoning pattern error mode (P j )  

Behavior error domains {Bj^) 

Failure/error frequency 

Subject task performance factors: 

Correction time to each common-cause error 

Point of failure/error occurrence time in each error mode (0^ 

(2) Independent variables: 

Requirement specifications 

Subject expertise level 

Programming language 

(3) Controllable Factors: 

Type of task (requirements of assignment) 

Program task size 

Type of hardware and operating system 

(4) Uncontrollable factors: 

Subject factors (subject life data, programming experience, typing skill. 
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intelligence, attitude, knowledge) 

External common-cause factors (fires, earthquakes, tornadoes, etc.) 

Abnormal environments (temperature, humidity/moisture, vibrations) 

(5) Conditional factors: 

Level of subject: expert 1, expert 2 

Type of language: FORTRAN, C 

Type of requirement: shop scheduling, inventory system 

Preparation of experimental materials Experimental materials were pre

pared for requirement specifications, experimental procedures, data collection, and 

data analysis and representations (Appendix B). 

(1) Programming requirements including determining the optimal sequence for ma

chine replacement or optimal inventory policy using a simulation consisting of 300-400 

lines using Fortran or C 

(2) Subject level evaluation 

(3) Consultation support 

(4) Experiment procedure and subject note 

(5) Data collection sheet, error and failure description modes 

(6) Questionnaires for personal life data bank 

Pilot Experiments A pilot experiment was needed for evaluating and testing 

the experimental design. Analysis of the pilot experiment resulted in a redesign and 

a re-assessment of effects to be observed. 

(1) Project 1 (beginner subjects with LOTUS-123): Project 1 was a three week 

experiment using beginner subjects (level 1), and LOTUS-123, a spread-sheet man
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agement software package. It involved the analysis of an inventory control problem. 

Software users, as experimental subjects, simulated the performance of an inventory 

management procedure under random demands, selecting management parameters 

for optimum (that is, lowest cost) inventory control. During the software task, the 

subject as a programmer described his/her reasons for errors in programming be

havior. An observer monitored the data collection and recorded a description of 

programmer's error modes. 

Experimental period: Key experiment: 10/22, 1990 - 11/16, 1990 

Group A: Tue. 8-11 (3hrs/w) 

Group B: Thur. 8-11 (3hrs/w) 

Subjects(20 subjects): 

Group A: 10 students 

Group B: 10 students 

Experimental design tools: 

Subject programming bases: LOTUS-123 (150-200 lines) 

Data analysis: SAS, LOTUS-123 

(2) Project 2 (2-year experienced intermediate programmers using FORTRAN): Project 

2 was conducted by the 2 year experienced intermediate programmers (level 2) using 

FORTRAN. The task requirement involved the determination of an optimal sequence 

of machines to employ in providing service for a number of years. The development 

started with a manual exercise and design of a program to determine appropriate 

methods, then proceeded with the development of the FORTRAN program to imple

ment the algorithm. During the FORTRAN programming, the programmer's task 

behavior was observed by the project navigator to collect common-cause errors in 
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human-software interactions. 

Experimental period; Key experiment: 2/7, 1991 - 3/5, 1991 

Group A: Thur. 8-11 (3hrs/w) 

Group B: Thur. 11-2 (3hrs/w) 

Subjects: (13 subjects) 

Group A: 7 students 

Group B: 6 students 

Experimental design tools: 

Subject programming bases; FORTRAN (180-230 lines) 

Data analysis: SAS, LOTUS-123 

(3) Project 3 (5-8 year experienced expert programmers using FORTRAN or C): 

Project 3 was conducted by 5-8 year experienced expert programmers (level 3) who 

were paid $6 per hour using FORTRAN or C. The task requirement involved the 

determination, using dynamic programming, of an optimal sequence of machines to 

employ in providing service for a number of years. The development started with 

a manual exercise for problem understanding and for designing the program to de

termine appropriate methods. It then proceeded with developing the program to 

implement the algorithm. During programming, the programmer's task behavior 

was observed by a supervisor, who was the project navigator, to measure the three 

factors of common-cause error modes in human-software interaction processing sys

tems discussed previously. 

Experimental period: Key experiment; 3/6, 1991 - 3/28, 1991 

Subjects: (13 subjects: 5-8 years experienced experts) 

Group A: 7 experts (FORTRAN) 
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Group B: 6 experts (C) 

Experimental design tools: 

Subject programming bases: FORTRAN or C (180-230 lines) 

Data analysis: SAS, LOTUS-123 

Subject selection and training Subjects were recruited using public adver

tisements. Their life data was gathered during an individual interview. They were 

educated and trained to the exact requirements and procedures of the experiment. 

They were also evaluated with respect to programming experience and knowledge 

background as objective data, and intelligence to problem solving, experiment atti

tude, and environmental conditions during the experiment as a subjective data for 

the subject calibration. The contents of this experimental phase are as follows: 

(1) Screening and selecting of subjects 

(2) Subjects life data collection 

(3) Initialization session: 

Problem definition, manual solving and mathematical validation 

Requirements of specification 

Procedures used in the experiment and data collection 

(4) Training session: 

Programming requirements 

Hardware and operating systems 

Data gathering and presentation 

(5) Consultation session 

Hardware and operating systems 
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Programming language 

Programming requirement understanding 

Common-cause error modes 

(6) Experiment attitude with monitoring log-on time 

(7) Subject calibration and evaluation factors: Subjects can be evaluated according to 

five categories for comparison regarding their task performance. The rating weights 

for these five factors are determined from interviews with an expert programmer. 

Programming experience: 

Programming experience (years) 

Recurrence of programming (months) 

Project scale involved (lines) 

Knowledge background: 

Knowledge of programming language 

Familiarity with hardware 

Familiarity with operating system 

Educational background of requirement 

Intelligence; 

Problem solving ability 

Creativity of entire approach 

Requirement understandability 

Recognition of project process 

Experimental attitude: 

Concentration to task 

Commitment to regulation 
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Preparation effort to task 

Conditions in the work environment: 

Entire condition of work station 

Noise, temperature, humidity, etc. 

Subject physical conditions 

Extra mental, psychological stress 

Main experiment and data collection The main experiment was then car

ried out and common-cause error data gathered with the following conditions: 

Experimental Laboratory: human-software interaction laboratory 

Hardware setting: work station: DECstation 2100 

Operating setting: VINCENT: ULTRIX 

Representation interview session in each 30-45 minutes 

Supervisor monitoring using simultaneous logging terminal 

(1) Project 4 (5-8 year experienced expert programmers using FORTRAN or C): 

Project 4 was carried out using 5-8 year experienced expert programmers who were 

paid $6/hr with FORTRAN or C. Two task requirements involved the determination 

of an optimal sequence of machines to employ in providing service for a number of 

years using dynamic programming or determination of an optimal inventory policy 

using simulation. Three educational sessions were employed: an initial session, a 

training session, and a consultation session. The program development started with 

a manual exercise used for problem understanding and for designing the program 

to determine appropriate methods. This was followed by writing of the program 

to implement the algorithm. During programming, the programmer's task behavior 
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was observed by a supervisor, the project navigator, using a second terminal to 

measure error frequency, error correction time, point of occurrence in time for the 

three factored common-cause error modes discussed previously. 

Experimental period: Key experiment: 10/4, 1991 - 11/7, 1991 

Subjects: (10 subjects: 5-8 years experienced experts) 

Subject level: Expert 1, Expert 2 

Group A: 5 experts (:FORTRAN) 

Group B: 5 experts (:C) 

Requirement Specifications: 

Optimal machine replacement - using dynamic programming 

Optimal inventory policy and system simulation 

Experimental design tools: 

Subject programming bases: FORTRAN or C (300-400 lines) 

Data analysis: SAS, LOTUS-123 

• Common-cause data collections: The supervisor(project experimenter) recorded 

the contents of subject common-cause error including correction time and time of 

occurrence on the data collection sheet. During the data collection session, all of 

subject task and behavior were monitored and checked by the supervisor using a 

parallel simultaneous logging terminal, and these monitoring properties were taped 

in the video tape recorder. There were two different categories of collected data as 

follows: 

(1) Objective data collection: contents of error, frequency, correction time, and point 

of occurrence in time; 

(2) Subjective data collection: reason of common-cause error, identification of common-
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cause error mode, pattern recognition of common-cause error mode, behavior domain 

of common-cause error mode, and evaluation factors of subject task performance. 

• Representation of common-cause error modes: At the representation interview ses

sion held every 30-45 minutes, common-cause error protocol as the actual location 

of human error was associated with the contents of common-cause error. Common-

cause error modes including their identification, pattern recognition, and behavior 

error domains were derived from the subject recognition of reasons for error and the 

supervisor's objective representational analysis together according to the review of 

recorded video tape. 

interaction. The human error control mechanisms and prevention was viewed in 

the aspects of knowledge-based engineering approach, human-software information 

processing system, and human factors orientation. The major results are applied to 

intelligent design, knowledge based system, human-software interaction, and behavior 

domain model. 



www.manaraa.com

94 

CHAPTER 5. COMMON-CAUSE ANALYSIS AND RESULT 

REPRESENTATION 

Experimental data representing common-cause error in human-software interac

tion can be analyzed using statistical methods and geometrical modeling. Results 

enable one. to define common-cause domain based on human error and to repre

sent the common-cause error control mechanism. Then, statistically collected data 

are analyzed for the evaluation of the subject task, the statistical contents of the 

common-cause error experimental data, and their representational characteristics. 

Analysis of Subject Task Data 

In the pilot projects including Project 2 and Project 3, tasks were conducted 

by 26 subjects, averaging 22.9 years in age, 4.3 years of programming experience, 

and a typing speed of 4.7 pages per hour. The result was an average total frequency 

of error occurrence of 21.3, 182.5 minutes total error correction time during 438.7 

minutes of total computing time per each version of software development. Using 

correlation analysis, which measures the strength of the linear relationship between 

two variables, the Pearson correlation coefficients of programming experience were 

-0.05419 for total frequency, -0.48282 for total time spent compute, and -0.42207 for 

total correction time. It means that more experienced programmer has less error and 
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better performance. The analysis revealed that programming experience comparing 

the two levels, intermediate and expert, had a significant effect to the programmers' 

performance. 

In the main experiment, two different tests (five subjects using dynamic pro

gramming and five using the inventory control system) were conducted using two 

respective languages (C and FORTRAN) with subjects averaging 24 years in age, 

5.8 years of programming experience, and a typing skill of 4.4 pages per hour as 

shown in Table 5.1. Results consisted of a 32.1 average (9.4 standard deviation) total 

common-cause error frequency, and 255.3 minutes average total error correction time 

during 523 minutes total computing time per each version of software development. 

Time spent in understanding and problem solving was 109 minutes, and design time 

for programming was 170 minutes. 

Table 5.2 was developed from interviews with the subject programming experts 

concerning the experiment in human-software interaction. The purpose of these inter

views was to establish weight rating factors for subject evaluation in the programming 

experiment. In the five categories of subject evaluation factors, average rating from 

experts' responses are (a) programming experience (23%), (b) knowledge background 

(21%), (c) intelligence (23%), (d) experiment attitude (18%), (e) work environmental 

conditions (15%). 

Subject evaluation factors (a) and (b) are evaluated by objective interview data, 

and factors (c), (d), and (e) are evaluated by subjective grading by experiment super

visor for aver all subject task performance during the experiment. Table 5.3 shows 

the subject overall performance score applied with rating factors to evaluate expert 

level during the programming experiment. As a result, with average evaluation score 
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Table 5.1: Subject Task Data in A Common-Cause Model Experiment® 

S-ID^' Reqt^ Exp(^ FreqG Ct-T/ Com-T5 Sol-T^^ Des-T^ Tot-TJ 
P4C01 P4-B 5 24.0 256.0 452 120 300 872 
P4C02 P4-B 7 27.0 242.5 494 60 90 644 
P4C03 P4-A 8 25.0 119.5 256 60 60 376 
P4C04 P4-A 5 32.0 432.5 781 180 270 1231 
P4C05 P4-A 5 52.0 487.5 886 180 210 1276 
P4F06 P4-B 5 38.0 312.5 535 120 240 955 
P4F07 P4-B 6 43.0 123.0 482 70 50 602 
P4F08 P4-B 6 29.0 158.0 403 60 60 523 
P4F09 P4-A 6 23.0 144.5 255 120 120 495 
P4F10 P4-A 5 28.0 277.0 686 120 240 1046 
MEAN: . 5.8 32.1 255.3 523 109 170 802 
S.D.: 1.0 9.4 127.8 208.2 46.3 104.2 318.9 

^Expressed as time in min. 

^S-ID: Subject Identification No. 
''Reqt: type of requirement(A: dynamic programming, or B: inventory control). 

^Exp: programming experience (years). 
®Freq: frequency of common-cause error mode. 

Ct-T: correction time of error. 
^Com-T: computing time of program. 

^Sol-T: problem solving time. 

^Des-T: program design time. 
•^Tot-T: total spent time. 
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Table 5.2: Weight Rating Factors for Subject Evaluation: Interview Search from 
Programming Experts 

a3 bl b2 b3 b4 cl c2 c3 c4 dl d2 d3 el e2 e3 e4 
A 5 4 4 2 1 
. 3 2 2 3 1 1 2 3 3 3 3 3 2 3 1 2 2 3 
B 3 5 5 3 3 
. 2 2 2 3 1 2 3 3 2 3 2 2 2 2 1 1 2 3 
C 4 3 5 3 3 
. 3 3 2 3 1 2 3 3 2 3 2 3 2 2 1 2 3 3 
D 4 3 5 2 2 , 

. 3 3 2 2 2 2 1 3 2 2 2 3 2 2 1 2 1 3 
E 5 5 4 4 4 
. 3 3 2 3 2 3 3 3 1 3 2 3 1 2 3 2 3 3 
F 5 3 5 3 2 • 

. 2 3 3 3 1 2 1 3 3 3 1 2 3 3 1 1 2 2 
G 4 5 3 3 3 
. 3 3 3 3 2 2 2 3 3 3 3 3 2 3 3 3 3 3 
H 5 4 5 5 4 • 

. 3 3 1 3 2 2 2 3 1 3 2 3 3 2 3 3 2 3 
I 5 4 4 4 2 
. 3 3 1 3 2 2 2 3 2 3 2 3 2 3 2 1 2 3 
J 4 3 3 4 5 . 
. 2 3 2 3 1 2 1 3 2 3 2 3 3 3 3 3 3 3 
TU . 39 43 33 . 29 . 
. 27 28 20 29 15 20 20 30 21 29 21 28 22 25 20 20 23 29 

R^3 21 23 18 15 
. 36 37 27 34 18 24 24 29 21 29 21 37 30 33 22 22 25 31 

^I: programming expert interview. 

^a,b,c,d,e: evaluation factors for expert level; al,a2,a3: evaluation subfactors for 
a. 

^T: total score( upper: score for a, b, c, d, e; lower: score for subfactors al, a2, 
a3). 

^R: rating percentage for subject evaluation. 
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of 4.3 and standard deviation of 0.5, a expert level 1 group included C03 (4.9), F09 

(4.8), C02 (4.8), F06 (4.5), and F08 (4.3), and a expert level 2 group included F07 

(4.2), COl (4.1), C04 (3.8), COS (3.6), and FIO (3.5). 

Common-Cause Mode-Oriented Data Statistics 

Experimentally collected data were analyzed using statistical methods and ge

ometrical configurations to define the common-cause error reasons and to represent 

the error mechanism. 

Common-cause error mode data and analysis table 

Common-cause error modes are shown in Table 5.4 for the three factors /^, Pj, 

Bj, with three evaluating variables, frequency j ̂ ), correction time (Qj^j^;), and 

point of occurrence time (Oj j in each common cause error mode. Figures 5.1 5.2 5.3 

show the portion of common-cause errors in each of the three error modes indicating 

their contents in terms of identification, pattern recognition, and behavior domain in 

human-software interaction. With the error occurrence frequency factor, the ma

jor reasoning categories in each common-cause error mode are: in the identification 

mode, 1.3 (19.4%), 1.2 (16.2%), and I.l (15.9%); in the pattern recognition mode, P.2 

(33.7%), P.3 (18.0%), and P.l (15.7%); in the behavior domain mode, B.3 (43.6%) 

and B.2 (36.5%). When the error correction time factor is applied, I.l (26.2%), 

1 . 5  ( 1 6 . 6 % ) ,  a n d  1 . 8  ( 1 3 . 9 % )  i n  t h e  m o d e ;  P . 2  ( 4 4 . 8 % )  a n d  P . l  ( 2 1 . 2 % )  i n  t h e  Pj  

mode; and B.3 (62.7%) and B.2 (28.1%) in the Bj. mode. On the aspect of error 

correction time per error frequency (CT/F), the major effort in each common-cause 

error mode resulted in I.l (12.9 minutes/frequency), 1.5 (11.6) and 1.6 (10.1) in the 
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Table 5.3: Subject Level Evaluation with Rating Factors 

S" al" a2 a3 bl 1)2 b3 1,4 cl c2 c3 c4 (11 (12 (13 el e2 e3 c4 

I 3.6^ 4.2 4.2 . . 3.9 . 5.0 . . . 

d.l'' 4® 3 4 4 5 4 4 4 4 4 5 4 4 4 5 5 5 5 
2 4.6 4.8 5.0 4.9 5.0 
4.8 5 4 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 
3 4.6 5.0 5.0 4.9 5.0 
4.9 5 4 5 5 5 5 5 5 5 5 5 ,5 5 5 5 5 5 5 
4 3.9 3.8 3.4 3.2 5.0 
3.8 4 3 5 4 4 4 3 3 4 3 4 3 4 3 5 5 5 5 
5 3.7 3.4 3.2 13 5.0 
3.6 4 4 3 3 4 4 3 3 3 3 4 4 3 3 5 5 5 5 
6 4.2 5.0 4.0 4.6 5.0 
4.5 4 4 5 5 5 5 5 4 4 4 4 5 5 4 5 5 5 5 
7 4.6 4.8 4.0 2.9 5.0 
4.2 4 5 5 5 5 5 4 4 4 4 4 3 3 3 5 5 5 5 
8 3.6 4.4 4.8 3.9 5.0 
4.3 4 3 4 4 5 4 5 5 4 5 5 4 4 4 5 5 5 5 
9 4.3 5.0 4.8 4.9 5.0 
4.8 4 5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 
10 3.3 3.4 3.2 2.9 5.0 
3.5 4 3 3 3 4 4 3 3 3 3 4 3 3 3 5 5 5 5 

nal^23 21 23 18 15 
. 36 37 27 34 18 24 24 29 21 29 21 37 30 33 22 22 25 31 
Avg4.0 . 4.4 , 4.2 . 3.9 5.0 . 
4.3 4.1 3.8 4.3 4.3 4.7 4.5 4.1 4.1 4.1 4.1 4.4 4.0 4.1 3.9 5 5 5 5 
SD 0.5 . 0.6 0.7 0.8 0 
0.5 0.4 0.7 0.7 0.7 0.4 0.5 0.8 0.7 0.7 0.8 0.4 0.8 0.8 0.8 0 0 0 0 

®S; experiment subject identification no. 
^a,b,c,d,e: evaluation factors for subject expert level; al,a2,a3: evaluation subfac-

tors for factor a. 
•^upper score: score for a,b,c,d,e. 
^Evl score: final evaluation score for subject expertise level. 
®lower score: score for subfdctors al,a2,a3. 
/Rat: rating percentage for subject evaluation. 
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Table 5.4: Common-Cause Error Mode and Experimental Data Analysis: Total ^ 

CCM^ Freq CT POT CT/F-/ 

I.l 54 15.9% 697.0 26.2% 369.7 70.7% 12.9 
1.2 55 16.2% 317.0 11.9% 217.7 41.6% 5.8 
1.3 66 19.4% 224.0 8.4% 230.7 44.1% 3.4 
1.4 30 8.8% 189.0 7.1% 260.0 50.9% 6.3 
1.5 38 11.2% 442.0 16.6% 320.5 61.3% 11.6 
1.6 35 10.3% 354.0 13.3% 235.4 45.0% 10.1 
1.7 24 7.0% 72.0 2.7% 163.3 31.2% 3.0 
1.8 38 11.2% 369.0 13.8% 359.2 68.7% 9.7 

Tot 340 100.0% 2664.0 100.0% 523.05 ' 51.7%^ 7.8* 
P.l 55 15.7% 583.5 21.2% 254.1 48.6% 10.6 
P.2 118 33.7% 1234.0 44.8% 292.4 55.9% 10.5 
P.3 63 18.0% 168.5 6.1% 248.8 47.6% 2.7 
P.4 17 4.9% 140.5 5.1% 250.5 47.9% 8.3 
P.5 24 6.8% 83.0 3.0% 223.2 42.7% 3.5 
P.6 9 2.6% 80.5 2.9% 238.8 45.7% 8.9 
P.7 26 7.4% 216.0 7.9% 316.9 60.6% 8.3 
P.8 22 6.3% . 84.5 3.1% 207.7 39.7% 3.8 
P.9 16 4.6% 163.0 5.9% 198.1 37.9% 10.2 
Tot 350 100.0% 2753.5 100.0% 523.8 47.4% 7.9 
B.l. . 55 16.3% 86.5 3.2% 246.5 47.1% 1.6 
B.2 123 36.5% 754.0 28.1% 257.2 49.2% 6.1 
B.3 147 43.6% 1681.5 62.7% 280.0 53.5% 11.4 
B.4 12 3.6% 160.5 6.0% 289.2 55.3% 13.4 
Tot 337 100.0% 2682.5 100.0% 523.0 51.3% 8.0 

identification of common-cause error mode, Pf- pattern recognition of 

common-cause error mode, Bj^: behavior domain of common-cause error mode. 

^CCM; common-cause error mode. 
j portion(%) of total frequency. 

I  

portion(%) of correction time. 

j average point of occurrence in time from total 100 % completion time. 

f CT/F: correction time per frequency( unit: time in min.). 
^total 100% completion time. 

^average percentage of 0^- j 

^average time of CT/F. 
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/j mode; P.l (10.6), P.2 (10.5), and P.9 (10.2) in the Pj mode; B.4 (13.4) and B.3 

(11.4) in the Bj, mode during the programming experiment. 

Using a comparison of major reasoning modes with geometric vector evaluations 

between language C group and language Fortran group (Tables 5.5 and 5.6), the 

difference is 1.5 and 1.8 of second and third place in identification mode. P.6 and B.4 

had bigger vector values in Fortran group. Using a comparison of major reasoning 

modes with geometric vector evaluations between requirement A and B (Tables 5.7 

and 5.8), there was no difference on trend in the identification mode and in the 

behavior error domain mode. P.l and P.7 were diiferent rank of second and third 

place in pattern recognition. Using a comparison of major reasoning modes with 

geometric vector evaluations between programming expertise level 1 and level 2 (Ta

bles 5.9 and 5.10), there was no difference on trend in the behavior error domain 

mode. 1.4 and 1.5 were different rank of third and fourth place in identification mode. 

P.5 had a bigger value of vector evaluation in expert level 2 as a better programming 

expertise subject group. 

Figures 5.4, 5.5, and 5.6 show plots of proportional mean frequency based on six 

criteria for characteristics of each common-cause error mode. All trends are similar 

except for 1.3 and 1.4 in the common-cause identification mode. Figures 5.7, 

5.8, and 5.9 show plots of proportional mean correction time based on six criteria 

for each common-cause error mode. There are no significant differences in pattern 

recognition and behavior domain. However, 1.4 and 1.5 in the identification mode 

have a little difference in correction time. Figures 5.10, 5.11, and 5.12 show plots 

of proportional mean occurrence time based on six criteria for each common-cause 

error mode. 
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Table 5.5: Common-Cause Error Mode - Data Analysis: Language-C ° 

CCM Freq F- • CT POT CT/F® V(l:l:l)-/ 

I.l 27 15.9% 461.5 28.7% 408.0 71.1% 17.1 78.3 
1.2 30 17.6% 211.5 13.2% 228.0 39.7% 7.1 45.4 
1.3 33 19.4% 113.0 7.0% 243.2 42.4% 3.4 47.2 
1.4 8 4.7% 41.0 2.5% 255.2 44.5% 5.1 44.8 
1.5 21 12.4% 306.0 19.0% 322.9 56.3% 14.6 60.7 
1.6 18 10.6% 226.0 14.1% 267.1 46.6% 12.6 49.8 
1.7 16 9.4% 33.0 2.1% 155.8 27.2% 2.1 28.8 
1.8 17 10.0% 215.0 13.4% 415.6 72.4% 12.7 74.3 
Tot 170 100.0% 1607.0 100.0% 573.8^ 50.0%^ 9.5' 53.7; 
P.l 27 15.3% 323.5 18.9% 269.2 46.9% 12.0 52.9 
P.2 64 36.4% 870.0 50.8% 303.4 52.9% 13.6 81.9 
P.3 31 17.6% 76.0 4.4% 278.5 48.5% 2.5 51.8 
P.4 12 6.8% 120.0 7.0% 270.4 47.1% 10.0 48.1 
P.5 13 7.4% 58.0 3.4% 230.3 40.1% 4.5 41.0 
P.6 5 2.9% 37.5 2.2% 173.1 30.2% 7.5 30.4 
P.7 9 5.1% 105.0 6.1% 323.7 56.4% 11.7 57.0 
P.8 6 3.4% 56.5 3.3% 224.8 39.2% 9.4 39.5 
P.9 9 5.1% 66.0 3.9% 198.6 34.6% 7.3 35.2 
Tot 176 100.0% 1712.5 100.0% 573.8 44.0% 9.7 48.6 
B.l. . 26 15.6% 50.5 3.2% 257.9 44.9% 1.9 47.7 
B.2 65 39.2% 457.0 29.2% 270.6 47.2% 7.0 67.9 
B.3 74 44.6% 1035.0 66.2% 294.5 51.3% 14.0 94.9 
B.4 1 0.6% 22.0 1.4% 179.0 31.2% 22.0 31.2 
Tot 166 100.0% 1564.5 100.0% 573.8 43.7% 9.4 60.4 

a T.. identification of common-•cause error mode, P J :  pattern recognition of 

common-cause error mode, behavior domain of common-cause error mode. 

j portion(%) of total frequency. 
portion(%) of correction time. 

j average point of occurrence in time from total 100 % completion time. 
®CT/F: correction time per frequency( unit: time in min.). 

geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^average percentage of 

^average time of CT/F. 
average vector value in V( 1:1:1). 
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Table 5.6: Common-Cause Error Mode - Data Analysis: Language-Fortran ® 

CCM Freq F- • I} CT POT CT/F® V(l:l:l)'f 

I.l 27 15.9% 235.5 22.3% 331.4 70.2% 8.7 75.3 
1.2 25 14.7% 105.5 10.0% 207.3 43.9% 4.2 47.4 
1.3 33 19.4% 111.0 10.5% 218.1 46.2% 3.4 51.2 
1.4 22 12.9% 148.0 14.0% 274.7 58.2% 6.7 61.2 
1.5 17 10.0% 136.0 12.9% 318.0 67.4% 8.0 69.3 
1.6 17 10.0% 128.0 12.1% 203.7 43.1% 7.5 45.9 
1.7 8 4.7% 39.0 3.7% 172.8 36.6% 4.9 37.1 
1.8 21 12.4% 154.0 14.5% 302.7 64.1% 7.3 66.9 

Tot 170 100.0% 1057.0 100.0% 472.2^ 53.7%^ 6.2* 56.8; 
P.l 28 16.1% 260.0 25.0% 238.9 50.6% 9.3 58.7 
P.2 54 31.0% 364.0 35.0% 281.3 59.6% 6.7 75.7 
P.3 32 18.4% 92.5 8.9% 218.9 46.4% 2.9 50.6 
P.4 5 2.9% 20.5 2.0% 225.8 47.8% 4.1 47.9 
P.5 11 6.3% 25.0 2.4% 216.0 45.7% 2.3 46.2 
P.6 4 2.3% 43.0 4.1% 282.5 59.8% 10.8 60.0 
P.7 17 9.8% 111.0 10.6% 310.0 65.7% 6.5 67.2 
P.8 16 9.2% 28.0 2.7% 200.8 42.5% 1.8 43.6 
P.9 7 4.0% 97.0 9.3% 197.5 41.8% 13.9 43.0 
Tot 174 100.0% 1041.0 100.0% 472.2 51.1% 6.0 54.8 
B.l, . 29 17.0% 36.0 3.2% 235.2 49.8% 1.2 52.7 
B.2 58 33.9% 297.0 26.6% 243.7 51.6% 5.1 67.2 
B.3 73 42.7% 646.5 57.8% 265.4 56.2% 8.9 91.3 
B.4 11 6.4% 138.5 12.4% 316.8 67.1% 12.6 68.5 
Tot 171 100.0% 1118.0 100.0% 472.2 56.2% 6.5 69.9 

identification of common-cause error mode, P J :  pattern recognition of 

common-cause error mode, behavior domain of common-cause error mode. 

portion(%) of total frequency. 
portion(%) of correction time. 

average point of occurrence in time from total 100 % completion time. 
®CT/F: correction time per frequency( unit: time in min.). 

^geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^average percentage of j 

^average time of CT/F. 

^average vector value in V(l:l:l). 
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Table 5.7: Common-Cause Error Mode - Data Analysis: Requirement-A ® 

CCM Freq CT POT CT/F® V(l:l:l)^ 

1.1 25 15.1% 370.5 23.8% 426.9 74.5% 14.8 79.7 
1.2 29 17.5% 238.5 15.3% 214.8 37.5% 8.2 44.1 
1.3 39 23.5% 113.0 7.3% 238.9 41.7% 2.9 48.4 
1.4 11 6.6% 73.0 4.7% 276.2 48.2% 6.6 48.9 
1.5 19 11.4% 291.0 18.7% 343.3 59.9% 15.3 63.8 
1.6 19 11.4% 244.0 15.7% 198.2 34.6% 12.8 39.7 
1.7 10 6.0% 16.0 1.0% 263.4 46.0% 1.6 46.4 
1.8 14 8.5% 210.0 13.5% 446.3 77.9% 15.0 79.5 
Tot 166 100.0% 1556.0 100.0% 572.8^ 52.6%^ 9.4* 56.3; 
P.l 24 14.1% 275.0 17.5% 259.3 45.3% 11.5 50.6 
P.2 65 38.2% 809.5 51.5% 310.6 54.2% 12.5 84.0 
P.3 31 18.2% 76.5 4.9% 253.9 44.3% 2.5 48.2 
P.4 10 5.9% 86.5 5.5% 238.7 41.7% 8.7 42.4 
P.5 12 7.1% 49.5 3.1% 175.8 30.7% 4.1 31.7 
P.6 3 1.8% 35.5 2.3% 247.5 43.2% 11.8 43.3 
P.7 7 4.1% 105.0 6.7% 352.5 61.5% 15.0 62.0 
P.8 9 5.3% 60.5 3.8% 239.4 41.8% 6.7 42.3 
P.9 9 5.3% 74.0 4.7% 213.1 37.2% 8.2 37.9 
Tot 170 100.0% 1572.0 100.0% 572.8 44.4% 9.3 49.2 
B.l. . 27 16.5% 46.0 3.0% 261.4 45.6% 1.7 48.6 
B.2 65 39.6% 474.0 30.6% 264.3 46.1% 7.3 68.1 
B.3 69 42.1% 965.0 62.3% 303.6 53.0% 14.0 92.0 
B.4 3 1.8% 64.0 4.1% 327.0 57.1% 9.5 57.3 
Tot 164 100.0% 1549.0 100.0% 572.8 50.5% 9.5 66.5 

identification of common-cause error mode, Pj: pattern recognition of 

common-cause error mode, Bj.: behavior domain of common-cause error mode. 

portion(%) of total frequency. 

j portion(%) of correction time. 

j average point of occurrence in time from total 100 % completion time. 
®CT/F: correction time per frequency( unit: time in min.). 

^geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^average percentage of O- • i,. 

^average time of CT/F. 
average vector value in V(l:l:l). 
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Table 5.8: Common-Cause Error Mode - Data Analysis: Requirement-B ^ 

CCM Freq F- • CT POT CT/F® V(l:l:l)-/ 

I.l 29 16.7% 326.5 29.5% 312.5 66.0% 11.3 74.2 
1.2 26 14.9% 78.5 7.1% 220.6 46.6% 3.0 49.5 
1.3 27 15.5% 111.0 10.0% 222.4 47.0% 4.1 50.5 
1.4 19 10.9% 116.0 10.5% 283.3 60.0% 6.1 61.7 
1.5 19 10.9% 151.0 13.6% 296.5 62.7% 8.0 65.1 
1.6 16 9.2% 110.0 9.9% 238.2 50.3% 6.9 52.1 
1.7 14 8.1% 56.0 5.1% 172.9 36.5% 4.0 37.8 
1.8 24 13.8% 159.0 14.3% 310.8 65.7% 6.6 68.6 
Tot 174 100.0% 1108.0 100.0% 473.2^ 54.3%^ 6.4* 57.4J' 
P.l 31 17.2% 308.5 26.1% 248.8 52.6% 10.0 61.2 
P.2 53 29.4% 424.5 35.9% 274.1 57.9% 8.0 74.3 
P.3 32 17.8% 92.0 7.8% 243.5 51.5% 2.9 55.0 
P.4 7 3.9% 54.0 4.6% 265.3 56.1% 7.7 56.4 
P.5 12 6.7% 33.5 2.9% 270.5 57.2% 2.8 57.6 
P.6 6 3.3% 45.0 3.8% 232.9 49.2% 7.5 49.5 
P.7 19 10.6% 111.0 9.4% 281.1 59.4% 5.8 61.1 
P.8 13 7.2% 24.0 2.0% 165.3 34.9% 1.9 35.7 
P.9 7 3.9% 89.0 7.5% 178.1 37.6% 12.7 38.6 
Tot 180 100.0% 1181.5 100.0% 473.2 50.7% 6.6 54.4 
B.l. . 28 16.2% 40.5 3.6% 231,7 49.0% 1.5 51.7 
B.2 58 33.5% 280.0 24.7% 250.1 52.8% 4.8 67.3 
B.3 78 45.1% 716.5 63.2% 256.3 54.2% 9.2 94.7 
B.4 9 5.2% 96.5 8.5% 232.6 49.1% 10.7 50.2 
Tot 173 100.0% 1133.5 100.0% 473.2 51.3% 6.6 66.0 

identification of common-•cause error mode. pattern recognition of 

common-cause error mode, behavior domain of common-cause error mode. 

portion(%) of total frequency. 

portion(%) of correction time. 

^Oi j k'- average point of occurrence in time from total 100 % completion time. 
®CT/F: correction time per frequency( unit: time in min.). 

geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^average percentage of j 

^average time of CT/F. 
^average vector value in V(l:l:l). 
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Table 5.9: Common-Cause Error Mode - Data Analysis: Expert Level 1 ® 

CCM Freq F- • CT POT CT/F® V(l:l:l)/ 
1.1 27 14.5% 403.0 24.4% 469.7 71.5% 14.9 76.9 
1.2 29 15.6% 221.0 13.4% 272.7 41.5% 7.6 46.3 
1.3 46 24.7% 146.5 8.9% 299.0 45.5% 3.2 52.5 
1.4 11 5.9% 54.0 3.3% 301.0 45.8% 4.9 46.3 
1.5 22 11.8% 367.0 22.2% 422.6 64.3% 16.7 69.0 
1.6 21 11.3% 243.0 14.7% 292.2 44.5% 11.6 48.2 
1.7 10 5.4% 17.5 1.1% 206.9 31.5% 1.8 32.0 
1.8 20 10.8% 199.0 12.0% 468.7 71.3% 10.0 73.1 

Tot 186 100.0% 1651.0 100.0% 657.4f 52.0%^ 8.9* 55.5; 
P.l 33 17.4% 368.0 21.2% 313.5 47.7% 11.1 55.0 
P.2 72 37.9% 866.0 49.8% 364.1 55.4% 12.0 83.6 
P.3 35 18.4% 93.0 5.3% 302.2 46.0% 2.7 49.8 
P.4 10 5.3% 101.0 5.8% 336.4 51.2% 10.1 51.8 
P.5 10 5.3% 54.0 3.1% 219.2 33.3% 5.4 33.9 
P.6 2 1.0% 31.0 1.8% 313.5 47.7% 15.5 47.7 
P.7 9 4.7% 101.0 5.8% 434.1 66.0% 11.2 66.5 
P.8 12 6.3% 69.0 4.0% 303.1 46.1% 5.8 46.7 
P.9 7 3.7% 55.0 3.2% 268.6 40.9% 7.9 41.2 
Tot 190 100.0% 1738.0 100.0% 657.4 48.3% 9.2 52.9 
B.l, . 29 15.8% 54.5 3.3% 310.3 47.2% 1.9 49.9 
B.2 70 38.3% 518.5 31.5% 325.4 49.5% 7.4 70.0 
B.3 81 44.3% 1041.0 63.1% 349.2 53.1% 12.9 93.6 
B.4 3 1.6% 35.0 2.1% 394.3 60.0% 11.7 60.0 
Tot 183 100.0% 1649.0 100.0% 657.4 52.5% 9.0 68.4 

"4= identification of common-•cause error mode, PF. pattern recognition of 

common-cause error mode, behavior domain of common-cause error mode. 

portion(%) of total frequency. 
portion(%) of correction time. 

^Oi j k'- average point of occurrence in time from total 100 % completion time. 

^CT/F: correction time per frequency( unit: time in min.). 

geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^average percentage of j 

^average time of CT/F. 
average vector value in V(l:l:l). 
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Table 5.10: Common-Cause Error Mode - Data Analysis: Expert Level 2 ® 

CCM Freq CT POT 
^i,i,k 

CT/F® V(l:l:l)/ 

I.l 27 17.5% 294.0 29.0% 269.7 69.4% 10.9 77.2 
1.2 26 16.9% 96.0 9.5% 162.7 41.9% 3.7 46.1 
1.3 20 13.0% 77.5 7.6% 162.3 41.8% 3.9 44.4 
1.4 19 12.3% 135.0 13.3% 238.0 61.2% 7.1 63.9 
1.5 16 10.4% 75.0 7.4% 218.3 56.2% 4.7 57.6 
1.6 14 9.1% 111.0 11.0% 178.6 46.0% 7.9 48.1 
1.7 14 9.1% 54.5 5.4% 128.5 33.1% 3.9 34.7 
1.8 18 11.7% 170.0 16.8% 249.6 64.2% 9.4 67.4 

Tot 154 100.0% 1013.0 100.0% 388.6^ 51.7%^ 6.6* 54.9; 
P.l 22 13.7% 215.5 21.2% 194.6 50.1% 9.8 56.1 
P.2 46 28.7% 368.0 36.3% 220.6 56.8% 8.0 73.2 
P.3 28 17.5% 75.5 7.4% 195.2 50.2% 2.7 53.7 
P.4 7 4.4% 39.5 3.9% 143.2 36.9% 5.6 37.3 
P.5 14 8.8% 29.0 2.9% 227.1 58.5% 2.1 59.2 
P.6 7 4.4% 49.5 4.9% 188.9 48.6% 7.1 49.1 
P.7 17 10.6% 115.0 11.3% 199.7 51.4% 6.8 53.7 
P.8 10 6.3% 15.5 1.5% 136.1 35.0% 1.6 35.6 
P.9 9 5.6% 108.0 10.6% 169.9 43.7% 12.0 45.3 
Tot 160 100.0% 1015.5 100.0% 388.6 47.9% 6.4 51.5 
B.l. . 26 16.9% 32.0 3.1% 182.7 47.0% 1.2 50.1 
B.2 53 34.4% 235.5 22.8% 188.9 48.6% 4.4 63.8 
B.3 66 42.9% 640.5 62.0% 210.7 54.2% 9.7 92.8 
B.4 9 5.8% 125.5 12.1% 219.2 56.4% 13.9 58.0 
Tot 154 100.0% 1033.5 100.0% 388.6 51.6% 6.7 66.2 

a T.. identification of common-•cause error mode, Pj: pattern recognition of 

common-cause error mode, Bf.: behavior domain of common-cause error mode. 

Portion(%) of total frequency. 
Portion(%) of correction time. 

^Oi j yr. average point of occurrence in time from total 100 % completion time. 
®CT/F: correction time per frequency( unit: time in min.). 

^geometric vector evaluation value with 1:1:1 rating. 
^total 100% completion time. 

^ total 100% completion time. 
^average time of CT/F. 

average vector value in V(l:l:l). 
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Figure 5.4: Portion of Frequency in Identification of Common-Cause Error Mode 
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C-C ERROR PATTERN RECOGNITION MODE 
FREQUENCY: C, F. A. 0. LI. L2 

20 -

+ F 
C-C Error Pollem Récognition Mode 
OA A B X LI V L2 

Figure 5.5: Portion of Frequency in Pattern Recognition of Common-Cause Error 

Mode 
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C-C ERROR BEHAVIOR DOMAIN MODE 
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Mode 
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Figure 5.7: Portion of Correction Time in Identification of Common-Cause Error 

Mode 
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Figure 5.8: Portion of Correction Time in Pattern Recognition of Common-Cause 

Error Mode 
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Figure 5.9: Portion of Correction Time in Behavior Domain of Common-Cause Er

ror Mode 
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P.4, P.5 and P.6 in the pattern recognition mode and B.4 in behavior domain 

mode result in different relative proportions but the remaining common-cause error 

modes show a strong trend for comparison among the various proportional means. 

Value of the common-cause function and simulated rating 

Each value listed in the common-cause function parameters can be produced by 

three factors, j j O^ j For example, using a 1:1:1 weight rate simulation: 

C((/i (0.159,0.262,0.707), 72(0.162,0.119,0.416), 73(0.194,0.084,0.441), 

74(0.088,0.071,0.509), 75(0.112,0.166,0.613), 76(0.103,0.133,0.450), 

77(0.071,0.027,0.312), 78(0.112,0.139,0.687)), (Pi (0.157,0.212,0.486), 

7 2̂(0.337,0.448,0.559), P3 (0.180,0.061,0.476), (0.049,0.051,0.479), 

• P5 (0.069,0.030,0.427), PQ (0.026,0.029,0.457), PJ (0.074,0.078,0.606), 

Pg(0.063,0.031,0.397), Pg(0.046,0.059,0.379)), (0.163,0.032,0.471), 

B2(0.365, 0.281,0.492), B3 (0.436,0.627,0.535), B4 (0.036,0.060,0.553))). 

From these common-cause profiles, one can determine the major common-cause error 

mode in terms of error frequency, error correction time, and point of error occurrence 

in time. The common-cause function can be simulated with different weighting of 

variables' rating as in Table 5.11. The final evaluation value of these common-cause 

functions can be produced using the geometrical vector evaluation method. 
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Figure 5.10: Portion of Occurrence Time in Identification of Common-Cause Error 

Mode 
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Figure 5.11: Portion of Occurrence Time in Pattern Recognition of Common-Cause 

Error Mode 
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C-C ERROR BEHAVIOR DOMAIN MODE 
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Error Mode 
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Table 5.11: Vector Evaluation with Rating Simulation ° 

CCM b 
- -

y \ c  V2 V3 V4 V5 V6 V7 V8 

-
pd CP o/ 1:1:1 1:2:3 2:1:3 3:2:1 1:3:2 3:1:2 2:3:1 2:2:1 

I.l 15.9 26.2 70.7 77.1 219.1 216.1 100.1 162.6 151.5 110.4 93.6 
1.2 16.2 11.9 41.6 46.2 128.1 129.5 68.3 92.0 97.1 63.7 57.9 
1.3 19.4 8.4 44.1 48.9 134.8 138.1 74.9 93.8 106.0 63.9 61.1 
1.4 8.8 7.1 50.9 52.1 153.6 153.9 59.1 104.4 105.4 57.9 55.7 
1.5 11.2 16.6 61.3 64.5 187.2 186.0 77.4 132.8 128.2 82.1 73.2 
1.6 10.3 13.3 45.0 48.0 138.0 137.2 60.7 99.0 96.1 63.6 56.2 
1.7 7.0 2.7 31.2 32.1 94.0 94.7 38.0 63.3 65.9 35.1 34.6 
1.8 11.2 13.8 68.7 71.0 208.2 207.8 81.3 143.9 142.1 83.3 77.4 
P.l 15.7 21.2 48.6 55.3 152.6 150.6 79.9 117.2 110.1 86.0 71.7 
P.2 33.7 44.8 55.9 79.2 193.1 186.2 146.2 178.0 157.2 160.4 125.3 
P.3 18.0 6.1 47.6 51.3 144.4 147.4 73.0 98.6 109.6 62.4 60.9 
P.4 4.9 5.1 47.9 48.4 144.1 144.1 51.1 97.1 97.1 51.2 49.9 
P.5 6.8 3.0 42.7 43.3 128.4 128.9 47.7 86.1 87.9 45.7 45.2 
P.6 2.6 2.9 45.7 45.9 137.2 137.2 46.7 91.8 91.8 46.8 46.4 
P.7 7.4 7.9 60.6 61.6 182.6 182.6 66.4 123.7 123.5 66.7 64.4 
P.8 6.3 3.1 39.7 40.3 119.4 119.8 44.4 80.2 81.7 42.7 42.1 
P.9 • 4.6 5.9 37.9 38.6 114.4 114.2 42.0 78.0 77.3 42.8 40.7 
B.l 16.3 3.2 47.1 49.9 142.4 145.0 68.2 96.1 106.2 58.1 57.6 
B.2 36.5 28.1 49.2 67.4 162.1 167.0 132.5 134.6 149.9 121.9 104.4 
B.3 43.6 62.7 53.5 93.2 208.3 193.1 188.9 220.8 180.2 214.1 161.8 
B.4 3.6 6.0 55.3 55.7 166.4 166.2 57.6 112.1 111.3 58.6 57.0 

identification of common-cause error mode, Pj: pattern recognition of 

common-cause error mode, behavior domain of common-cause error mode. 

^CCM: common-cause error mode. 
•^V: rating weight for simulation. 

^P: frequency of error occurrence(%). 
®C: error correction time(%). 

^0: point of error occurrence in time(% of final completion time). 
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Mapping geometrical vector evaluation in hexahedron contours 

There are three configurations of hexahedron contours shown in Figures 5.13, 

5.14, and 5.15, which present a combined severity profile of common-cause errors 

using each of the three factors of the common-cause function. Each common-

cause mode can be evaluated by the calculation of a geometrical vector value from 

the geometric origin (F, C, O)=(0, 0, 0). Connections between major reasoning 

common-cause modes and minor reasoning modes can be recognized from this con

tour map. From the common-cause function 7]^(0.159, 0.262, 0.707), as given in 

Table 5.11, the vector evaluation with a : ̂  : 7=1:1:1 factors is derived as follows: 

\/(l X 15.92 + 1 X 26.22 + i x 70.72) 

= y(252.81 4- 686.44 4- 4998.49) 

= ^(5937.74) = 77.1. 

As an example of vector evaluation for the common-cause function with a : /3 : 

7=1:1:1 as weight ratings, using values from column VI in Table 5.11, the overall 

common-cause function is, 

C((/i(77.1), /2(46.2), /3(48.9), /4(52.1), 75(64.5), 76(48.0), 77(32.1), 7g(71.0)), 

(fl (55.3), f2(79.2), ̂ 3(51.3), ̂ 4(48.4), ̂ 5(43.3), f6(45.9), f7(61.6), fg(40.3), ̂ 9(38.6)), 

(fîl(49.9),B2(67.4),53(93.2),B4(55.7))). 

By different emphasis or weighting on the evaluation factors, a different orientation 

stress for representing development cost or effort, frequency of error occurrence, error 

correction time, and point of error occurrence time, using evaluation by geometric 
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Figure 5.13: Identification of Common-Cause Error Mode: Geometric Configuration 
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P7 
P2 

PS-

Figure 5.14: Pattern Recognition of Common-Cause Error Mode: Geometric Con
figuration 
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B4 B3 
B2 

Figure 5.15: Behavior Domain of Common-Cause Error Mode: Geometric Configu
ration 
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vector can be calculated to produce varying shapes. Thus, the figure of hexahedron 

can be changed with different unit values on each of the three axes. Such simulation 

has shown trends of differences in identification modes among different ratings, the 

major reasoning common-cause error modes being I.l, 1.8, and 1.5. In pattern recog

nition of the common-cause error mode, the same trend results with major reasoning 

patterns, P.2, P.7, and P.l in simulation VI, V2, V3, V5, V6, but different order 

results with P.2, PI, P.7 in V7 and V8. In simulation V4(a : /3 : 7=3:2:1), the major 

order of important reasoning pattern modes in common-cause error is P.2, P.l, and 

P.3. In the behavior domain common-cause error mode, the same result occurred 

with major reasoning .behavior domain B.3, B.2, appearing in every simulation ex

cept V2 which produced a different order of major reasoning behavior domain modes 

with B.3, B.4, and B.2. 

Historical common-cause error recovery time zone 

Points of common-cause error occurrence in time are shown in Figures 5.16, 5.17, 

and 5.18. Three time zones are shown; the initial time zone, the intermediate time 

zone, and the final time zone. Each level of recovery time zone affects the cost/effort 

of software development. In the final error recovery time zone, very expensive costs 

of development and error recovery occur. These involve I.l and 1.8 in the mode, 

P.2 and P.7 in the Pj mode, and B.3 and B.4 in the Bj. mode. In the intermediate 

error recovery time zone, it involves 1.4 and 1.5 in the mode, P.l, P.3, P.4 and P.6 

in the Pj mode, B.2 in the Bf. mode. In the initial error recovery time zone, the 

most economical cost related error recovery time zone, it involves 1.2, 1.3, 1.6 and 1.7 

in the /j mode, P.5, P.8 and P.9 in the Pj mode, B.l in the Bj, mode. 
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Figure 5.16: Identification of Common-Cause Error Mode: Recovery Time Zone 
(Units: portion (%) of occurrence time.) 
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Transition relationship diagram and grouping of major common-cause fac

tors 

Figure 5.19 shows the transition relationships among different common-cause 

function modes, and Table 5.12, Table 5.13, and Table 5.14 show the relative 

transition frequencies among common-cause error modes. Common-cause properties 

can be grouped according to their analogical characteristics with human behavioral 

aspects. There are four groups of common-cause factors, Group 1 of skill-based 

Table 5.12: Frequency of Transition Load and Relationship between and Pj " ^ 

COM LI 1.2 1.3 1.4 1.5 1.6 L7 1.8 TOTAL AVG 
P.l 18 4 5 5 1 11 11 0 55 6.9 
P.2 31 28 6 7 11 3 1 . 24 111 13.9 
P.3 2 12 33 1 0 4 4 7 63 7.9 
P.4 0 1 0 0 6 6 0 1 14 1.8 
P.5 0 3 8 4 1 2 1 0 19 2.4 
P.6 0 4 2 1 0 0 0 0 7 0.9 
P.7 0 0 0 8 17 0 0 0 25 3.1 
P.8 2 3 10 1 0 0 3 0 19 2.4 
P.9 0 0 0 0 0 6 4 2 12 1.5 
TOTAL 53 55 64 27 36 32 24 34 325 . 
AVG 5.9 6.1 7.1 3.0 4.0 3.6 2.7 3.8 

identification of common-cause error mode, Pj: pattern recognition of 

common-cause error mode. 

^TOTAL: total frequency of error occurrence in each common-cause error mode, 
AVG: average frequency of error occurrence in each common-cause error mode. 

behavior error domain, Group 2 of rule-based behavior error domain. Group 3 of 

knowledge-based behavior error domain, and Group 4 of model-based behavior error 

domain. The heavy lines indicated more frequent transition each other, that is, more 

strong relationship, than the light lines. The major transit relationship group is 
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Figure 5.19; Transitions Relationship Diagram and Grouping of Common-cause Er
ror Modes 



www.manaraa.com

132 

Table 5.13; Frequency of Transition Load and Relationship between and ^ ^ 

COM LI L2 L3 1.4 1.5 L6 L7 L8 TOTAL AVG 
B.l: 0 9 36 3 0 0 7 0 55 6.9 
B.2: 1 25 24 10 22 23 5 13 123 15.4 
B.3: 48 21 5 13 12 9 11 20 139 17.4 
B.4: 4 0 0 0 1 0 1 3 9 1.1 
TOTAL 53 55 65 26 35 32 24 36 326 . 
AVG 6.6 6.9 8.1 3.3 4.4 4.0 3.0 4.5 • • 

identification of common-cause error mode, Bj,: behavior domain of common-
cause error mode. 

^TOTAL: total frequency of error occurrence in each common-cause error mode, 
AVG: average frequency of error occurrence in each common-cause error mode. 

1.3, P.3 and P.8 in B.l Group 1; 1.2, 1.5, 1.6, P.4, P.5, P.7 and P.9 in B.2 Group 2; 

and I.l, 1.4, 1.7, 1.8, P.l and P.2 in B.3 Group 3. The minor transit relationship 

group is 1.7 and P.5 in B.l Group 1; 1.3, 1.4, 1.8, P.l, P.2, P.3 and P.6 in B.2 Group 

2; 1.2, 1.5, 1.6, P.7 and P.9 in B.3 Group 3; and I.l, 1.8, P.2 and P.9 in B.4 Group 

4. Each group has unique characteristics and error symptoms in various aspects of 

human behavior domain properties which were explained in the previous chapter. 

Correlation and regression analysis 

Correlation analysis measures the strength of the linear relationship between 

two variables such as frequency and correction time, correction time and point of 

occurrence in time, or frequency and point of occurrence in time. Table 5.15 indicates 

the extent to which these correlate with each other. A positive value of the 

Pearson correlation coefficient indicates more correlation between two variables. A 

negative value indicates less correlation. From Table 5.15, programming experience 
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Table 5.14: Frequency of Transition Load and Relationship between Pj and 

CCM P.l P.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 TOTAL AVG 
B.l: 0 0 34 0 7 0 0 15 0 56 6.2 
B.2: 20 21 25 13 13 6 16 2 7 123 13.7 
B.3: 35 87 4 2 0 1 9 2 4 144 16.0 
B.4; 0 5 0 0 0 0 1 0 3 9 1.0 
TOTAL 55 113 63 15 20 . 7 26 19 14 332 . 
AVG 13.8 28.3 15.8 3.8 5.0 1.8 6.5 4.8 3.5 • • 

^Pj- pattern recognition of common-cause error mode, behavior domain of 

common-cause error mode. 

^TOTAL; total frequency of error occurrence in each common-cause error mode, 
AVG: average frequency of error occurrence in each common-cause error mode. 

had a negative influence in the overall correlation value. This means that a more 

experienced programmer had a better performance in the programming task with 

less frequent error, and less time taken in programming design and error correction. 

More spent time in the design phase resulted in a lower frequency of error occurrence 

during the computing phase. 

The hypothesis in this experiment, that there were no significant differences in 

common-cause error properties among different categorical conditions such as specifi

cation requirements, programming languages, and subject expertise levels, was tested 

according to F statistics using the SAS ANOVA variance analysis test. Using 

factorial experimental analysis^, there is no significant difference in frequency as a 

dependent variable (see Table 5.16) for three independent variables involving two lev

els for each variable. The probabilities values associated with the F value are 0.9770 

for requirement, 0.3085 for expert level, and 0.9770 for programming language. No 

^ In a factorial design, the effects of different factors are considered simultaneously. 
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Table 5.15: Pearson Correlation Coefficients / Prob > | R | under HQ: Rho=0 / n 
= 10 

. Exp° Freq^ Ct-T^ Com-T^ Sol-T® Des-T-/ Tot-T^ 
Exp 1.0000 -0.3741 -0.6512 -0.6656 -0.7483 -0.7947 -0.8030 

0.0 0.287 0.041 0.036 0.013 0.006 0.005 
Freq -0.3741 1.0000 0.5295 0.6553 0.3971 0.1006 0.5184 

0.287 0.0 0.116 0.040 0.256 0.782 0.125 
CT-T -0.6512 0.5295 1.0000 0.9090 0.8628 0.7019 0.9482 
. 0.041 0.116 0.0 0.000 0.001 0.024 0.000 
Com-T -0.6656 0.6553 0.9090 1.0000 0.7409 0.5492 0.9400 
. 0.036 0.040 0.000 0.0 0.014 0.100 0.000 
Sol-T -0.7483 0.3971 0.8628 0.7409 1.0000 0.7460 0.8728 

0.013 0.256 0.001 0.014 0.0 0.013 0.001 
Des-T -0.7947 0.1006 0.7019 0.5492 0.7460 1.0000 0.7938 

0.006 0.782 0.024 0.100 0.013 0.0 0.006 
Tot.-T -0.8030 0.5184 0.9482 0.9400 0.8728 0.7938 1.0000 

0.005 0.125 0.000 0.000 0.001 0.006 0.0 

®Exp: programming experience. 

^Freq: frequency of common-cause error mode. 
^Ct-T: correction time of error. 

^Com-T: computing time of program. 
®Sol-T: problem solving time. 

^Des-T: program design time. 
^Tot-T: total spent time. 
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Table 5.16: ANOVA Test for Variance Analysis (Model: Frequency = Requirement 
Level Language; Dependent Variable: Frequency) 

Source D.F« S.S^ M.S^ pd Pr > F^ 
Model 3 137.1000 45.7000 0.41 0.7499 
Error 6 663.8000 110.6333 
Corrected total 9 800.9000 . . 

R.S^ Root MSE^ Freq Mean 
. 0.1712 32.7671 10.5182 . 32.1000 
Source D.F Anova S.S M.S F Pr > F 
Requirement 1 0.1000 0.1000 0.00 0.9770 
Subject Level 1 136.9000 136.9000 1.24 0.3085 
Language 1 0.1000 0.1000 0.00 0.9770 

"D.F: degree of freedom. 

^S.S: the sum of squares. 
"^M.S: mean square. 

^F: the F value for testing hypothesis that the group means for that effect are 
equal. 

^Pr > F: the significant probability value associated with the F value. 
R.Square: measures how much variation in the dependent variable. 

^C.V: coefficient of variation. 

^Root MSB: estimates the standard deviation of the dependent variable. 
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Table 5.17: ANOVA Test for Variance Analysis (Model: CorrectionTime = Require
ment Level Language; Dependent Variable: CorrectionTime) 

Source D.F« S.S* NLSf pd Fr> F^ 
Model 3 1509.1000 503.0333 0.76 0.5555 
Error 6 3963.5000 660.5833 
Corrected total 9 5472.6000 . . . 

ii.s/ C.V9 Root MSE^ Freq Mean 
. 0.2758 56.7369 25.7018 . 45.3000 
Source D.F Anova S.S M.S F Pr> F 
Requirement 1 476.1000 476.1000 0.72 0.4285 
Subject Level 1 980.1000 980.1000 1.48 0.2689 
Language 1 52.9000 52.9000 0.08 0.7867 

®D.F: degree of freedom. 

^S.S: the sum of squares. 
^M.S: mean square. 

^F: the F value for testing hypothesis that the group means for that effect are 
equal. 

^Pr > F: the significant probability value associated with the F value. 

R.Square: measures how much variation in the dependent variable. 
^C.V: coefficient of variation. 

^Root MSE: estimates the standard deviation of the dependent variable. 
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significant difference occurred for correction time as a dependent variable associated 

with the F value probabilities, 0.4285 for requirement, 0.2689 for expert level, and 

0.7867 for language (Table 5.17). There is only a significant difference in the expert 

level with computing time as a dependent variable. The significant probability val

ues associated with F value are 0.3705 for requirement, 0.0400 for expert level, and 

0.3617 for programming language (Table 5.18). Regression analysis typically is the 

Table 5.18: ANOVA Test for Variance Analysis (Model: ComputingTime = Re
quirement Level Language; Dependent Variable: ComputingTime) 

Source D.po S.S& M.S^ pd Pr > F® 
Model 3 231240.4000 77080.1333 2.91 0.1230 
Error 6 158881.6000 26480.2666 
Corrected total 9 390122.0000 « . . 

R.S/ C.V9 Root MSE'^ Freq Mean 
. 0.5927 31.1143 162.7276 . 523.0000 
Source D.F Anova S.S M.S F Pr> F 
Requirement 1 24800.4000 24800.4000 0.94 0.3705 
Subject Level 1 180633.6000 180633.6000 6.82 0.0400 
Language 1 25806.4000 25806.4000 0.97 0.3617 

®D.F: degree of freedom. 

^S.S: the sum of squares. 
'^M.S: mean square. 

^F: the F value for testing hypothesis that the group means for that effect are 
equal. 

^Pr > F : the significant probability value associated with the F value. 

^R.Square: measures how much variation in the dependent variable. 
^C.V: coefficient of variation. 

^Root MSE: estimates the standard deviation of the dependent variable. 

analysis of the relationship between one dependent variable and a set of independent 

variables to find out how well one can predict values of the dependent variable using 

least-squares estimates and error sum of squares based on the independent variables. 
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For an estimate of linear regression equation of the straight line that best fits the 

Table 5.19: Regression Analysis (Dependent Variable: Frequency) 

Source D.F« REf S.Ef Pr > |r|c 
Intercept 1 22.1197 6.2585 3.53 0.0077 
Correction Time 1 0.0391 0.0221 1.77 0.1155 
Intercept 1 16.5718 6.7649 2.45 0.0400 
Computing Time 1 0.0297 0.0121 2.45 0.0397 
Intercept 1 30.5530 6.2605 4^8 0.0012 
Design Time 1 0.0091 0.0318 0.29 0.7822 

°D.F: degree of freedom. 

^P.E: parameter estimate. 
•^S.E: standard error. 

^T: T for HQ : parameter=0, the t test that parameter is zero. 
^Pr > |T|: the probability that a t statistic would obtain a greater absolute value 

than that observed given that the true parameter is zero. 

points between two variables involving frequency, correction time, computing time, 

and design time, the Table 5.19 has the coefficients and intercepts for the linear 

regression equation describing frequency as a dependent variable: 

F = 0.0391 -Q+ 22.1197, 

where F: frequency, CF correction time(Units: time in min.); 

F = 0.0297 • MT + 16.5718, 

where F: frequency, MF. computing time(Units: time in min.); 

F = 0.0091 • DT + 30.5530, 

where F\ frquency, DF. design time(Units: time in min.). 

From the Table 5.20, the linear regression line of design time as a dependent variable 
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(correlation coefficient: 0.7019) is: 

Dt = 0.5727 • Ct + 23.7929, 

where Df. design time, Cf. correction time(Units: time in min.). 

The acceptance confidence probabilities for the best fit regression line between the 

variables are significantly enough with t test statistics except design time. 

Table 5.20: Regression Analysis (Dependent Variable: Design Time) ^ 

Source D.Fk P.E^ S.Ed rpe Pr > \T\i 
Intercept 1 23.7929 58.0672 0.410 0.6927 
Correction Time 1 0.5727 0.2055 2.787 0.0237 

®DF: Degree of Freedom; PE: Parameter Estimate ; SE: Standard Error; T: T for 
HQ: parameter=0, the t test that parameter is zero; Pr > |r|: the probability that 
a t statistic would obtain a greater absolute value than that observed given that the 
true parameter is zero. 

^D.F: degree of freedom. 
^P.E: parameter estimate. 

^S.E: standard error. 
^T: T for HQ: parameter=0, the t test that parameter is zero. 

^Pr > |r|: the probability that a t statistic would obtain a greater absolute value 
than that observed given that the true parameter is zero. 

General observations and causal factors of common-cause error domain in 

human-software interaction 

General observations and some symptoms of common-cause error were discov

ered during the experiment. 

(1) Pre-existing knowledge was a major diagnostic symptom for completing the pro

gramming task. Subjects solved the problem, designed the requirements, and com
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puted using incorrect or mis-informed knowledge and methodologies. These symp

toms had a lower frequency but required the longest correction time. 

(2) Human memory, recognition, and availability were associated with some effects in 

the rule-based behavior domain. Logical, functional, syntax, design, and complexity 

error problems were examples of these symptoms which occurred with intermediate 

frequency and required a moderate amount of correction time. Within this category, 

the symptoms were related to pattern matching, stereotypical recognition, subject 

working memory and availability to take more logical rule-based problems. 

(3) Human attention and perceptual ability can be affected by subject sensory-

motor variability, recent physical and psychological events, and external environ

ments. These symptoms constituted the minor reasons for common-cause error do

main with greater frequency but the least correction time. They were identified as 

clerical, semantic, syntax, and some operation errors associated with skill-based be

havior domain. 

(4) Incomplete of knowledge was a major common-cause in the area of system oper

ation, programming language, design method, and requirements specification. This 

causal factor was associated with the knowledge-based and rule-based behavior do

main groups. 

(5) Uncertainty of information was associated with knowledge-based, model-based, 

and skill-based behavior domain groups. This was a causal factor in the following ar

eas: understanding and design of requirements specification, knowledge background 

of hardware and operating system, internal and external situation of environment, 

conditional factors in environment of system and subject. 

(6) There was no significant difference in common-cause error properties between the 
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two levels among three of the subject factors: C and Fortran for programming lan

guage, A (dynamic programming assignment) and B (inventory control system) for 

requirements specification, and Level 1 (less programming expertise level) and Level 

2 (more programming expertise level) for programming expertise level, the exception 

bein computing time in level of expertise. 

(7) The major common-cause error modes arose from system design and require

ment error, output and output formatting error, and program logic error. Design 

deficiency, logical formulation of the problem, and knowledge deficiency were major 

categories in pattern recognition in the common-cause error mode. The knowledge-

based behavior domain and rule-based behavior domain were significantly important 

factors in common-cause error behavior domain. 

(8) The knowledge-based behavior error domain was associated with the most signif

icant error mode group in each of the common-cause function factors which involved 

identification and pattern recognition error modes. This is respectively requested 

the error causal prevention for knowledge-based behavior error domain including the 

following symptom factors: task identification, domain principle, object orientation, 

concurrent and intelligent design, integration and optimization method. Character

istics of these causal factors are human variability, selectivity, adaptation, working 

memory limitation, errors in a causal structure, availability, matching bias revisited, 

need for human decision making, incomplete knowledge, and uncertainty of informa

tion. 

(9) Frequency and correction time in each common-cause error mode have a more 

consistent trend than point of occurrence in time among different error modes and 

over different task criteria. 
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Common-Cause Error Control Mechanism and Prevention 

It is said that human-software interaction is more difficult to apply at higher 

levels, simply because great system complexity and flexibility imply more choices 

for system designers. It takes longer and is more difficult to analyze the system. 

Since there is a trend toward more sophisticated technology where the human is a 

programmer and a monitor of system behavior rather than an active controller, more 

human factors efforts and system improvements will be directed toward problems at 

this level. 

With the analysis of experimental data, characteristics and properties of common-

cause human error can be defined tentatively in the human behavior domain in 

human-software interaction, and the human error control mechanism can be re

designed. 

Error control mechanism and environment 

Figure 5.20 schematically represents a feed back process from a common-cause 

model to an error control scheme in human-software interaction. The experimental 

model for defining the common-cause human domain error in identification, pattern 

recognition, and behavior domain of common-cause proceeds to a 'black box' with 

the result of common-cause analysis. Then, with the representation of common-cause 

error analysis, knowledge processing and information processing of human-software 

interaction, it provides all information and guide lines for the new intelligent design 

which will be supported by concurrent design orientation and a model-based design 

method. Figure 5.21 shows environmental phenomena and infiuences in human-

software interaction. This schematic frame-work explains how major common-cause 
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Figure 5.20: Common-Cause Error Control Mechanism 
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error domains relate to human-software interaction and system processing. In this 

error control environment, the system environment of human-software interaction 

including social problems, knowledge back ground, information system, situation 

motivation, and physical climate affect the human-software function. These factors 

are directly or indirectly, involved with system goal formation, knowledge orientation, 

human-software information processing, psychological mechanisms and physiological 

functioning for software task output. 

Allocation of function and system interaction 

Allocation of function is the process whereby the designer decides which tasks 

or functions should be allocated to the software subsystem and which to the human 

subsystem. The reliability of software can be improved less expensively than can the 

reliability of the human simply by putting extra components in parallel. Software can 

be changed fairly easily. The human was allocated some functions in older systems 

to pèrinit flexibility for changes. Then, this flexibility could be achieved through 

software modification, making it practical for the designer to allocate even more 

functions to the software system. Therefore, the major decision in allocation of 

function involves checking that the human is left with a reasonable set of tasks. These 

tasks should neither overload nor under-load, considering the operators' capabilities. 

In order to accomplish system goals in human-software interaction, designers 

must proceed systematically with seven relevant questions. These are: 

(1) What system inputs and outputs must be provided to satisfy goals in human-

software interaction? 

(2) What operations functions are required to produce system outputs? 
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(3) What functions should the human perform within the human-software system? 

(4) What are the training and skill requirements of human subjects? 

(5) Are the tasks demanded by the system compatible with human capabilities? 

(6) What interfaces does the human need to perform the job between the human and 

software systems? 

(7) Does the human help or hurt software operation systems and vice versa? 

Design analysis in human-software interaction 

Common-cause design error patterns are due to inadequate design by the pro

gram designer. The three types of errors are the failure to implement human needs 

in the design, assigning an inappropriate function to a person, and failure to ensure 

the effectiveness of human-software interaction. Factors such as too much hastiness 

in the design effort, inclination of the designer to a particular design method and 

poor analysis of the requirement specifications needs are the causes of design errors. 

Design principles for improving software task productivity in human-software 

interaction are as follows; 

(1) Provide feedback error control mechanism with considerations of their environ

ment; 

(2) Be consistent in its system design and task completion; 

(3) Minimize human memory demands by the information from human-software in

formation processing; 

(4) Keep the program simple, and not too much complexity; 

(5) Match the program to software users' skill level; 

(6) Sustain human, users or operators, orientation. 
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Knowledge-based human-software interaction and prevention 

Interface software that can adapt to the current operator and the current context 

is a long-term research goal of the adaptive interface project. An adaptive human-

software interface needs to include a knowledge-base that encompasses four domains; 

knowledge of the current human operator, knowledge of the human-software inter

action scheme, knowledge of the operation task, and knowledge of the underlying 

human-software interaction system. 

There are at least three major factors underlying the inadequacy of HSI^ tech

nology [80]. 

(1) Interface software is generally not viewed as part of the system but rather as a 

software package between the system and the operator [77]. 

(2) The design of effective interfaces is a difficult problem with sparse theoretical 

foundations [67]. 

(3) Software engineering principles are generally not given significant consideration 

in designing interfaces. Human operator specifications using the information hiding 

principle[83] in an abstract interface [61] need to be incorporated in the design of 

human-software interaction. 

Advantages and disadvantages to adaptive human-software interfaces include: 

Advantages: 

(1) A system that dynamically allocates operations must be able to adapt to indi

vidual operators. It is imperative to have information specific to the current human 

operator for an optimal allocation process. 

(2) Many times operators may not have the necessary information or expertise to 

^HSI - Human-Software Interfaces. 
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modify their behavior. 

(3) An adaptive human-software interface system increases operator proficiency with 

a new system and prevents frustration with an overly simple system. 

Disadvantages: 

(1) The operator may not be able to develop a coherent model of the human-software 

system if the system is frequently changing. 

(2) The loss of control or the feeling of loss of control that the operator may experi

ence. 

(3) An adaptive interfaces also has an increase in implementation complexities and 

costs. 

Control of common-cause factors of incompleteness and uncertainty 

There are approaches and requirements for controlling the common-cause factors 

of incompleteness and uncertainty in aspects of the knowledge-based system including 

fuzzy set application. Software engineers are faced with information and knowledge 

simultaneously incomplete and uncertainties in human-software interaction. Since 

the initial phase of software system development, it became evident that these rea

soning factors could not be neglected because they are strongly related to the way in 

which the common-cause error problem is controlled by a software system designer. 

There are two aspects of data from a common-cause error experiment in human-

software interaction: incompleteness of information/knowledge, and uncertainty of 

information/knowlwdge [79]. 

(1) Incompleteness of information/knowledge was dealt with using some theories 

and techniques such as non-monotonic logics [66], truth maintenance system [64], 
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and reason maintenance [15]. Some causal factors of common-cause domain errors 

arise from incompleteness of information/knowledge in the area of; program source 

language, operating software system, background knowledge for requirements, and 

design methodology. 

(2) Uncertainty of information/knowledge has been studied using techniques based on 

probability, subjective probability, evidence theory, fuzzy sets and possibility theory 

[23] [122]. Some causal factors of common-cause domain errors arise from uncertainty 

of information/knowledge in the areas of requirement of specifications, hardware sys

tems, and environmental factors. 

A set of requirements is needed in order to have a plausible technique of coping 

with uncertainty of information/knowledge. A list of requirements has been formu

lated as follows [87]: 

(1) An inference should not depend on any assumptions about the probability distri

butions of the propositions, 

(2) It should be possible to assert common relationships between propositions when 

the relationships are indeed known, 

(3) It should be possible to posit information about any set of propositions and ob

serve the consequences for the whole system, 

(4) If the information provided to the system is inconsistent, this fact should be 

made obvious along with some notion of alternative ways that the information could 

be made consistent. 

The list of requirements has been extended [66] and arranged into three cate

gories bearing in mind distinct layers of the system, namely representation, inference, 

and control. The major requirements consider the following facts. 
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(1) The inference mechanisms should be logically tied to mechanisms initialized previ

ously for knowledge acquisition. Thus, the knowledge-base is consistent and preserves 

properties within the framework of a specified formalism. The same formalism should 

form a basis for inference layer. 

(2) A performance of the knowledge-base in the sense of its consistency and complete

ness should be taken into account by any inference procedure. The procedure should 

return not only a result of inference but also indicate the degree of its precision. 

Improving software productivity 

There is a general comment for software productivity improvement from the ex

periment in human-software interaction. 

(1) Getting the best strategies from programmer: staffing, facilities, project goals, 

and management; 

(2) Making policy more efficient: operating systems, environmental conditions, hard

ware work stations, office automation; 

(3) Training for the intelligent and concurrent design methodologies; 

(4) Consulting for appropriate requirements and matching to appropriate specifica

tion; 

(5) Eliminate factors: biased orientations, pre-existing knowledge/information, auto

mated documentation, quality assurance automated programming; 

(6) Eliminate rework: front-end aids, knowledge-based software task assistant, infor

mation hiding, modern programming practices, incremental development; 

(7) Building simpler products: process models, rapid prototype 

(8) Reuse components: component libraries, application generators, fourth-generation 
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languages, feedback function from post project. 
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CHAPTER 6. CONCLUSION 

Summary 

The overall objectives of this research were to develop a cognitive paradigm in

cluding a new model of common cause human-domain error and a common cause error 

function to define internal common cause human-domain errors and also to determine 

how to control and prevent common cause errors in human-software interaction. 

A laboratory experiment was performed to analyze the common causes of human 

error in software development and to identify software design factors contributing to 

the common cause effects in common cause failure redundancy. Three pilot projects 

with 46 subjects representing three skill levels were used to establish the design for 

a cognitive experiment. Following this study, a main experiment using ten pro

gramming experts was conducted in order to define a new cognitive paradigm, in 

the aspects of identification, pattern recognition, and behavior domain for internal 

human domain common-cause errors. 

Main experimental results consisted of a 32.1 average (9.4 standard deviation) 

total common-cause error frequency, and 255.3 minutes average total error correction 

time during 523 minutes total computing time per each version of software devel

opment. Time spent in understanding and problem solving was 109 minutes, and 

design time for programming was 170 minutes. In the five categories of subject eval
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uation factors, average rating from experts' responses are (a) programming experience 

(23%), (b) knowledge background (21%), (c) intelligence (23%), (d) experiment at

titude (18%), (e) work environmental conditions (15%). With the error occurrence 

frequency factor, the major reasoning categories in each common-cause error mode 

are: in the identification mode, 1.3 (19.4%), 1.2 (16.2%), and I.l (15.9%); in the pat

tern recognition mode, P.2 (33.7%), P.3 (18.0%), and P.l (15.7%); in the behavior 

domain mode, B.3 (43.6%) and B.2 (36.5%). When the error correction time factor 

is applied, I.l (26.2%), 1.5 (16.6%), and 1.8 (13.9%) in the mode; P.2 (44.8%) and 

P.l (21.2%) in the Pj mode; and B.3 (62.7%) and B.2 (28.1%) in the Bf, mode. 

Each value listed in the common-cause function parameters can be produced by 

three factors, j Cj j 0^ j Such simulation has shown trends of differences 

in identification modes among different ratings, the major reasoning common-cause 

error modes being I.l, 1.8, and 1.5. In pattern recognition of the common-cause error 

mode, the same trend results with major reasoning patterns, P.2, P.7, and P.l in 

simulation VI, V2, V3, V5, V6, but different order results with P.2, PI, P.7 in V7 

and V8. 

Each level of recovery time zone affects the cost/effort of software development. 

In the final error recovery time zone, very expensive costs of development and error 

recovery occur. These involve I.l and 1.8 in the mode, P.2 and P.7 in the Pj mode, 

and B.3 and B.4 in the Bf, mode. In the intermediate error recovery time zone, it 

involves 1.4 and 1.5 in the mode, P.l, P.3, P.4 and P.6 in the Pj mode, B.2 in the 

Bj^ mode. In the initial error recovery time zone, the most economical cost related 

error recovery time zone, it involves 1.2, 1.3, 1.6 and 1.7 in the /j mode, P.5, P.8 and 

P.9 in the Pj mode, B.l in the Bj, mode. The major transit relationship group is 
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1.3, P.3 and P.8 in B.l Group 1; 1.2, 1.5, 1.6, P.4, P.5, P.7 and P.9 in B.2 Group 2; 

and I.l, 1.4, 1.7, 1.8, P.l and P.2 in B.3 Group 3 from the transit relation diagram 

analysis. 

From correlation analysis, more experienced programmers had better perfor

mance in programming tasks with less frequent error, and less amount of time in 

programming design and error correction. More spent time in design phase resulted 

in a lower frequency of error occurrence during the computing phase. There was no 

significant difference in subject task performances among the three categorical fac

tors: requirements, languages, and expert levels, except in computing time for both 

subject expertise levels using SAS ANOVA variance analysis. Also linear regression 

lines provided for the best fits estimate points between two variables. 

Finally, the characteristics and the properties of common-cause failure modes in 

human-software interaction were determined by the analysis of experimental data col

lected on the ten expert subjects and compared with data from each of the categorical 

conditions in various aspects of the human-software information processing scheme, 

knowledge-based engineering approach, and concurrent/intelligent design concepts. 

Some observations and symptoms were analyzed from the results of the common-cause 

error domain in human-software interaction. First, human mind-robustness based on 

his/her knowledge obtained before was a major diagnostic symptom for complet

ing the task as related to the model-based and knowledge-based behavior domain 

category. Secondly, human memory, recognition, and availability were associated 

with some of the effects in the rule-based behavior domain. Third, human attention 

and perceptual ability could be affected by subject sensory-motor variability, recent 

physical and psychological events, and external environments. Fourth, incomplete 
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of knowledge was a major common-cause in the area of system operation, program

ming language, design method, and requirements specification. Fifth, uncertainty 

of information was associated with knowledge-based, model-based, and skill-based 

behavior domain groups. Sixth, there was no significant difference in common-cause 

error properties between the two levels among three of the subject factors: languages, 

requirements, and expert levels. Seventh, the major common-cause error modes arose 

from system design and requirement error, output and output formatting error, and 

program logic error. Design deficiency, logical formulation of the problem, and knowl

edge deficiency were major categories in pattern recognition in the common-cause 

error mode. The knowledge-based behavior domain and rule-based behavior domain 

were significantly important factors in common-cause error behavior domain. Eighth, 

the knowledge-based behavior error domain was associated with the most significant 

error mode group in each of the common-cause function factors which involved identi

fication and pattern recognition error modes. This is respectively requested the error 

causal prevention for knowledge-based behavior error domain. Ninth, frequency and 

correction time have a more consistent trend than point of occurrence in time among 

different error modes and over different task criteria. 

Limitations and assumptions of this experiment are as follows; 

(1) There was an assumption that all subject should be randomly selected. 

(2) The software development project had some limitations with its scale: (a) no. of 

subjects (ten programming experts); (b) program assignment size (300-400 lines). 

(3) There were limited levels for independent variables: (a) two programming expert 

levels (level-1, level-2); (b) two programming languages (C, Fortran); (c) two require

ments specification (A, B). 
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(4) There was an assumption of no difference in performance due to gender (8 males, 

2 females), or national source of undergraduate education (3 U.S./American, 1 Turk

ish, 6 Asian/Indian). 

(5) Hardware system limitation (only a VINCENT work station used). Software op

erating system limitation (only the VINCENT network ULTRIX was used). 

Conclusions 

Conclusions derived from this research are: 

(1) Two major common-cause reasoning groups exist in human-software interaction: 

(a) a major group consisting of knowledge-based behavior related errors indicated by 

design and knowledge deficiencies; (b) another major group consisting of rule-based 

behavior related errors indicated by logical errors, functional deficiencies, and system 

complexity. 

(2) In training education sessions, consideration should be given to common-cause 

reasoning characteristics to eliminate the common-cause human domain error in 

human-software interaction. These characteristics include: (a) human mind-robustness 

(pre-existing incorrect knowledge and information); (b) pattern recognition in human 

memory; (c) human attention and perceptual ability; (d) incompleteness of knowl

edge and information uncertainty. 

(3) Design with intelligence and concurrence by the knowledge-based processing: (a) 

knowledge acquisitions; (b) knowledge representation; (c) knowledge utilization. 

Future research should be directed toward: 

(1) Studies of common-cause error in system operation. 

(2) Studies of common-cause failure in communication network. 
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(3) Application of fuzzy set theory to pattern recognition. 

(4) Knowledge-based application to system operation. 

(5) Intelligent and concurrent design properties in software engineering. 

(6) Application of quality assurance techniques in the design and testing of human-

software interaction system. 

The results and analytical procedures showed during this study were to ana

lyze common-causes of software development related to human error and to identify 

software design factors contributing to common types of error occurring in human-

software interaction. Therefore, this can be applied to improving reliability of soft

ware developrnent and to providing guidelines for design of software development. 
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APPENDIX A. THE COMMON-CAUSE PRINCIPLE 

Common Cause and Rational Belief 

Wesley Salmon [102] and Bas C. Van Fraassen [37] have successively refined and 

elaborated Reichenbach's principle of the common cause, as part of a wide-ranging 

inquiry into statistical inference and explanation. In this section, the probabilistic 

concept of common cause, that is, the principle of the common cause, is derived. 

Reichenbach's common cause principle says roughly that if there is a positive 

correlation between simultaneous, spatially separate events, then there is a third 

event in their common past which explains for their frequent joint occurrence. This 

is an empirical statement. It reminds one somewhat of certain traditional principles 

of metaphysics, such as that every event should have a cause. A scientific theory 

concerning those correlated events is not complete unless it exhibits, or implies that 

there is, such a common cause as a tactical maxim for scientific inquiry. 

Extreme Bayesianism is the position that a rational person's epistemic state can 

be represented faithfully and without loss by means of a probability function; that any 

probability function at all can so represent some rational person; and that rational 

change of epistemic state consists in conditioning of that personal probability on the 

total evidence received. 

If Reichenbach's principle can be explained as an empirical proposition, there are 
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many probability functions that do not give it a high value. If one manages secondly 

his garden of beliefs in such a way that, whenever he has a certain degree of belief 

that two events are positively correlated, he gives at least that degree of belief to the 

proposition that they have a common cause, then either he gives probability one to 

that empirical proposition (the common cause principle) or else his belief change does 

not follow the pattern of conditioning on the total evidence. As Salmon has rightly 

emphasized, the principle of the common cause will appear as a powerful argument 

for scientific realism when it comes in any of these rational inference related forms. 

The Principle of the Common Cause 

Two events, A  and B ,  are called statistically independent if P { A B )  =  P { A ) P { B ) .  

When the equality is replaced by the greater-than relation we may call them posi

tively correlated. A third event C, using the conditional probability P(—/C) may 

have a relationship with either of these notions: 

i f  ( 1 )  P { A B )  >  P { A ) P { B )  

then there is an event C such that 

(2) P{ABl'C) = P{AIC)P{BIC) 

(3) P{ABIC) = P{AIC)P{BIC) 

(4) P(AIC) > P(A/C) 

(5) P{B/C) > P{B/C) 

With the time element, the AB is an event which happens at a given time if and 

only if both A and B happen at that time. Suppose that put Af for the (individual, 

non-generic) event is the occurrence of (generic) event A at time t. Suppose that has 

always occurred C in the intersection of the past cones of the occurrences of the A 
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and B. There are two relatively independent questions which may be raised. The 

first question is whether there is always an event C at a preceding time such that 

the above probabilistic relations hold. The second one is whether if C satisfies the 

stated conditions, it follows that C accounts for the correlation (can it reasonably be 

termed the cause?). 

Statistical Dependence 

The following relationships are important on examining statistical dependence: 

(6) P{AB) > P{A)P{B): A and B are positively correlated; 

(7) P{AfB) > P{A): A has a positive dependence on B; 

(8) P{AlB) > P{AIB): B is positively relevant to A; 

(9) P{AIBC) = P{AfC): C screens off B from A. 

In each case, if the probability function P is replaced by the conditional proba

bility Px = P(—/%), then the same terminology can be used with adding the rider 

relative to X. One can say easily how cognate terms such as independent, negatively 

relevant, and the like are used. Symmetric term, A and B are, is appropriate because 

the relationship is so clearly symmetric in A and B. It is important that there is no 

need to memorize the terms in (6)-(8), and their cognates, because the ones which 

are easily confused are actually equivalent (provided all the probabilities involved are 

well-defined). To get their this precise, let the letter, %, range over positive linear 

relations among numbers, defined by the properties [37]: 

I f O  < x , y < \ ,  a n d  0  <  b  

then 

( I )  x ^ y  i f f b x d t b y  
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( I I )  x d i y  i f f  { b  +  z ) % ( 6  +  y )  

where =,<,>,<,> are all positive linear relations. 

LEMMA. //3Î is a positive linear relation and P{X), P{BX) are positive, then 

the following are mutually equivalent: 

( A )  P { A B / X ) ^ P { A I X ) P { B I X )  

(B) P{AIBX)^P{AIX) 

(C) P{AlBX)dtP{AlBX) 

Using this Lemma, there are restatements on the properties of the common cause in 

Reichenbach's principle in follows: 

(10) If A and B are positively correlated, then there is an event C such that 

( A )  A  a n d  B  a r e  i n d e p e n d e n t  r e l a t i v e  t o  C  a n d  a l s o  r e l a t i v e  t o  C ,  

(B) C is positively relevant both to A and to B. 

(11) If B is positively relevant to A then there is an event C such that 

( A )  C ,  a n d  C ,  s c r e e n s  o f f  B  f r o m  A ,  

(B) Both A and B have a positive dependence on C. 
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APPENDIX B. EXPERIMENTAL MATERIAL AND 

REQUIREMENT SPECIFICATIONS 
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[ Experiment Procedures: Subject Phase] 

(1) Subject screen and interview: Subjects are screened and 
interviewed by the project supervisor according to their eligible 
capability for the experiment of human-software interactions. 
(2) Subject life data collection: Subject life data are collected 
including personal data, computer programming background, 
experience, and any medical problem. 

(3) Initialization session; In this session, initial information 
about the experiment is provided to subject with the general 
description of project, requirements of specification, and whole 
procedure of experiment and data collection. 
(4) Educational and training session; Manual solving and mathematical 
validation about programming requirements are provided, and common 
cause error modes are taught about their definition, data collection 
method, and representation of their allocation. 
(5) Program design; After understanding requirements, problems can 
be solved and the program is designed without encoding to computer. 
This is done in out of experiment station. 
(6) Consultation session: A consultation session is provided for 
better understanding of requirements, system components, common 
cause error modes before program encoding to computer. 

(7) Subject preliminary questionnaires: Just before start to program 
encoding, special conditions of subject's programming environments 
and design considerations are gathered from the subject. 
(8).Program encoding to computer; The designed program is encoded to 
the computer using specified hardware work station/operating system. 
(9) Representational interview session; In each 30-45 minutes, 
common cause error data can be collected. During the programming, 
Common cause errors are produced from human-software interactions 
and program failures by the verification of program. With 
correcting the error, occurrence time, correction time, and contents 
of the failures are recorded on data collection sheet. During 
programming, a subject is not interrupted in any way. 
(10) Representation of common-cause errors: With the representational 
interview, common-cause error protocol can be classified to 
identification mode, and allocated to pattern recognition mode and 
behavior domain mode with representational interview for common-cause 
errors. 

(11) Validation of data collection; Subject's task behavior is 
monitored by the supervisor using another simultaneous logging 
monitor, and that is taped to video recorder for their data 
validation. 
(12) Continue to collect data for common-cause human errors until 
requirements are completed with a correct formatted output. 
(13) After finishing the experiment, evaluate the experiment and 
predict a rating weight for subject performance evaluation. 
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91-P4-(Date/No.) : HUMAN-SOFTWARE DATA COLLECTION 
Programmer:91P4- Starting Time: 
Monitor : Ending Time: 

Oc 
No 

Occur 
Act j 

Time 
Cont 

Moc 
li 

[6 COC 
Pj 

e 
Bk 

Description 
of Failure and Error 

Correct. 
T(min) 
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Serial #: 91-P4- Date: , 1991 

.Name : , .S.S.#: - -
(Last) (First) 

.Address: (H) .Tel: 
(0) .Tel: 

[ Subject Life Data Collection;] 

A.Sex: M or F B.Age: C.Grade: 

D. Nationality: E. Major: 

I. Computer Programming Background & Experience: 

(1) How many years have you computer programmed? : yrs 

(2) When did you program using FORTRAN or C most currently? 
month ago Date: 

(3) What size of programming project did you get? lines 

(4) What kind of courses for computer programming did you take? 

(5) Computer types preference: 
(;type of hardware, workstation) 

(6) Computer languages (Which language is your best preference? 
Please circle it) : 

(7) Software Packages: 

J. Typing ability; pages/hour 

K. Do you like(enjoy) a computer work or programming? 

: ( A B C D E ) 
more <— —> less 

L. Do you have any medical (physical or mental) problem? 

If yes, describe: 

I hereby declare that I will honestly conduct to do my best in 
the experiment, and that the above is true statement. 

Signature Date 
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[ PRELIMINARY QUESTIONNAIRES for Programming Experiment ] 

91P4- Name: Date: 

1. Conditions of subject environment: 

a. Type of specific requirement; 

b. Type of programming language; 

c. Level of subject: 

d. Use of operating system; 

e. Use of hardware system; 

2. How much familiar(knowledgable) are you with this requirement? 

( strong, good, weak ) 

3. How much time did you spend to disign the program? hrs 

4. What is your design method? 

5. What is your condition level? . Physical: [ A B C D E ] 
good < > bad 

. Mental [ A B C D E ] 
(Psychological) 

*6. Coding time to computer minutes 

*7. Mis-typing error during the edition: ## 

*8. Typing skill: pages/hr 

*9. Special situation to subject: 

** You will have a representational interview at each 30-45 minutes 
long. This session will be taken for the identification and the 
allocation of your common-cause errors. 
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Project 4-A. "HUMAN-SOFTWARE RELIABILITY EXPERIMENT" 
- Optimal Sequence of Machine Replacement -

Project 4-A will involve the determination of an optimal sequence of 
machines to employ in providing a service for a number of years 
using FORTRAN or C language for the human-software reliability 
experiment. The development will start with a manual exercise and 
design the program to determine appropriate methods, then proceed 
with the development of FORTRAN or C program to implement the 
algorithm. During the programming, programmer's task behavior can 
be observed to find the common cause human error in human-software 
interaction using video camera monitor and recorder. 

[ Description of Problem and Requirement: ] 

The COST of buying a machine in the year of purchase and operating it 
until the year of retirement can be found thru a COST function as 
developed in STEPl. The COST of a sequence of machines is simply 
the sum of the costs of the individual machines that constitute that 
sequence. The COST functions employed in this assignment will be 
provided in a tabular form for a initial exercise and a program. 

To find the optimal replacement schedule for a specified LIFE, one 
must consider the various replacement sequences, and select that 
with the lowest total cost. All costs are expressed in current 
(year 0) dollars, so that they may be added and compared. 

During software development task, you and your observer should 
collect the data by observing programmer's task behavior, then the 
experimental data of the human-software reliability can be analyzed. 

STEPl. COST Functions: 

As a component of a program to find optimum replacement sequences 
for equipment, there is needed a function to give the total cost of 
a unit purchased in one specified year and retired in another. The 
current year is year 0 of the anticipated replacement schedule. All 
costs should be computed in terms of current dollars. 

This program component will be developed in two steps: 
A function subprogram PRESVAL(AMT, YEAR, INT) 

where PRESVAL(REAL) = the PRESENT VALUE in dollars. 
AMT(REAL) = the amount in dollars at the future date. 
YEAR(INTEGER) = the number of years in the future that 

the amount AMT is paid or received. 
INT(REAL) = the annual interest rate expressed as a 

decimal fraction ( for example, 12% interest 
would be 0.12) 

A function subprogram COST(PURCHASEYEAR, RETIRE_YEAR) 
where COST(REAL) = the total cost of the considered unit, 

expressed in current dollars. 
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PURCHASE_YEAR(INTEGER) = the year number in which the 
considered purchase is to be made. 

RETIRE_YEAR(INTEGER) = the year number in which the 
unit is to be retired 

FORMULAE : 
The PRESENT VALUE of a future amount may be derived from the 
compound interest formula: 

FUTURE_VALUE = PRESENT_VALUE * (1 + INTEREST) ** NUM_OF_YEARS 

The COST function should take into account the following items: 
The equipment is purchased for a purchase price (to be asked 
on the screen), which is paid at the year of purchase. 
When the equipment is retired, it has a salvage value which will 
be received at the year of retirement. This salvage value may 
be computed as: 

SALVAGE_VALUE = PURCH_PRICE * (0.8 ** AGE) 

During the unit's productive life, there will be an operating 
cost to be paid each year of service. (For computational 
purposes, assume that this is paid at the start of each year.) 
This operating cost increases with the age of the unit, and may 
be computed as: 

OPER_COST = $1200.00 + $500 * AGE 

• The AGE of the unit is measured from the year of purchase. 
The interest rate to be used will be provided on the screen. 

STEP2. Optimizing Solution: 

Develop a computer solution to this program, by written an 
optimizing subroutine. The subroutine is to have five arguments: 

SUBROUTINE FINDOPT(LIFE, COST, UNIT, LOWCOST, LASTPUR) 
where 

LIFE = an integer variable of the number of years for which service 
is required. Your subroutine's algorithm will compute an 
optimum sequence of machines that last this long. 

COST = this is not an ordinary variable, but the name of a function 
upon which your subroutine will call. FORTRAN allows a 
program to pass the name of a subprogram as an argument to 
another subprogram. The subprogram argument must be 
declared EXTERNAL in the subprogram which receive it, and 
this receiving subprogram may then invoke the passed 
subprogram under the name of the dummy argument. The 
algorithm to be employed will call this function to find 
the cost to use each machine of a series. COST is a real 
function, invoked for a machine purchased in year J and 
kept until year K as; COST(J,K). 
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UNIT = the unit number for output from the subroutine. This 
allows the main program to control where output will appear 
(screen of file). UNIT is an integer variable. 

LOWCOST = a one-dimensional real array into which the subroutine 
will put the minimum cost to provide service for any number 
of years up to the LIFE value. LOWCOST(J) = the minimum 
cost of providing machines from year 0 to the start of year 
J. This array has a zeroth element that your subroutine 
should set to zero. (The optimum cost to provide a machine 
for 0 years is zero.) This value will be used in the 
algorithm. 

LASTPUR = a one dimensional integer array into which the 
subroutine will put the year number when the last machine 
in an optimal sequence is to be purchased. LASTPUR(J) = 
the year of last purchase for the optimal sequence of 
machines lasting J years. This array lets you trace 
backwards the optimal sequence of machines. 

STEP3. Main Program & Output: 

Provide each question for given value for specified situation 
( Input values for Purchasing price, Annual interest, and Length of 
sequence year for simulation ). 
Make a main program to get a optimal output for given years with 
correct output formats. 

[ Submit the following outputs: ] 
(1) Program list(:.FOR or .C) including main and three subprograms. 
(2) Program output(:.OUT) with the same correct formats of handout. 
(3) Flowchart and raw hand-writing code for program design. 
(4) Raw data collection sheets of programming task experiment. 
(5) Statistical data analysis of your experimental data using given 

analysis form. (Mean, Variance, Percent of frequency & 
correction time for each mode, Regression analysis with 
frequency and correction time.) - by supervisor 

[ Manual Exercise for Computation: ] 
Given the following COST function, find the lowest total cost for a 
LIFE of 3 years. Tabulate your calculations for the alternatives 
below. Choose the sequence that results in the lowest total cost. 

Sequence: 1+1+1 1+2 2+1 3 

COST of 
Machines in 
Sequence 
(PUR,RET) 

Total Cost; 

(0 ,1) .  

( 1 , 2 ) .  

(2,3) 

(0 ,1 ) .  

(1,3). 

( 0 , 2 ) .  

(2,3). 

(0,3). 
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[ OUTPUT 1: COST Function; ] 
RETIRE YEAR 

PURCH 1 2 3 4 5 6 
YEAR 

4477.78 6934.57 8316.60 9109.16 9570.01 9840.45 
2487.65 3852.54 4620.33 5060.64 5316.67 

1382.03 2140.30 2566.85 2811.47 
767.79 1189.05 1426.03 

426.55 660.59 
236.97 

As the number of years grows, the number of alternate machine 
sequences becomes quite large. To provide a better strategy for the 
search, find the optimum as a member of a series — if the best 
choices for all prior LIFEs are known, then the search for the 
currently-desired life may involve a much smaller number of 
alternatives. For example, in studying a LIFE of 6 years, one need 
not investigate every sequence in which the final machine is 
purchased in year 4, since one has already found the best way to 
provide service for the first four years. 
Using this series approach, find the lowest costs for LIFE values up 
to 5 years. Record your analysis in the following table: 

ALT LOWEST LAST 
LIFE COST COST PURCH 
1: The ONLY way from 0 to 1: 0 

2: .Alternative: COST(0,2) 
Alternative: LOWCOST(l) + C0ST(1,2) 

The lowest-cost way from 0 to 2: 

3; Alternative: COST(0,3) 
Alternative: LOWCOST(l) + C0ST(1,3) 
Alternative: L0WC0ST(2) + COST(2,3) 

The lowest-cost way from 0 to 3 : 
( Does this agree with your answer from Ex.1? ) 

Alternative: COST(0,4) 
Alternative: LOWCOST(l) + C0ST(1,4) 
Alternative: L0WC0ST(2) + COST(2,4) 
Alternative; L0WC0ST(3) + COST(3,4) 

The lowest-cost way from 0 to 4; 

Alternative: COST(0,5) 
Alternative: LOWCOST(l) + COST(1,5) 
Alternative; L0WC0ST(2) + COST(2,5) 
Alternative: L0WC0ST(3) + COST(3,5) 
Alternative: L0WC0ST(4) + COST(4,5) 

The lowest-cost way from 0 to 5; 

What is the sequence of machines that will achieve this lowest cost 
for a LIFE of 5 years? 
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Project 4-B. "HUMAN-SOFTWARE RELIABILITY EXPERIMENT" 
- Optimal Inventory System and Simulation -

Project 4-B will be produced an optimal inventory policy to 
determine the order quantity and the reorder point for minimum 
inventory cost. This project will be conducted using programming 
language for human-software interaction and reliability experiment. 
Development will start with a manual exercise and design the 
program to determine appropriate methods, then proceed with the 
development of FORTRAN or C program to implement the algorithm. 
During the programming, programmer's task behavior can be observed 
to find the common cause human error in human-software interaction. 

[ Description of Problem and Requirement: ]. 

Project4-B will involve the analysis of an inventory control problem 
and the analysis of an experiment of human-software reliability in 
human-software interaction systems. You will simulate the 
performance of an inventory management procedure under random 
demands, selecting the management parameters for optimum (that is, 
lowest cost) control. Project will be observed by supervisor using 
video camera monitor and recorder. 

Situation in inventory system; 

The inventory quantity may be positive, representing items in 
stock, or negative, representing unfilled orders. 
The inventory control strategy is to order the REORDER QUANTITY 
whenever the STARTING INVENTORY for the day is at or below the 
REORDER POINT. This order will be delivered overnight, and will 
be a part of the next day's STARTING INVENTORY. 

Information of external environment: 
Case (Jan. 1991): 

MINIMUM DEMAND = 10 UNITS/DAY 
MAXIMUM DEMAND = 20 UNITS/DAY 
BEGIN INVENTORY = 20 UNITS 
SAFETY INVENTORY LEVEL = 10 UNITS 
ORDER COST = $100/ORDER 
HOLDING COST = $1/UNIT/DAY 
SHORTAGE COST = $10/UNIT/DAY 

Three 'costs' are associated with the management function: 
The ORDER COST is a fixed cost of processing an order for 
additional inventory, and is PER ORDER. (This is NOT the 
cost of the inventory itself, but the processing costs.) 

The HOLDING COST is the cost of holding goods, including the 
costs of storage and of capital being tied up in this 
inventory. It is proportional to the (positive) inventory 
on hand. 
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The SHORTAGE COST is the cost of NOT being able to fill a 
customer's order promptly. This 'cost' is difficult to 
measure, being largely a loss of future business from 
dissatisfied customers, but a strategy that ignores this 
cost in its computations will invariably make this true cost 
large in the efforts to minimize the others. It will be 
approximated as proportional to each days STARTING SHORTAGE 
(If we can tell the customer that the desired items have 
already been ordered and will be in tomorrow morning, there 
will be no dissatisfaction.) 

'EOQ' is a inventory model to determine the particular lot size 
that will result in the lowest value for total cost with given 
demand(:D), holding cost(;H), order cost(:P). 

Qo = SQRT( (2*P*D) / H ) 

STEP (1) Develop a subroutine for daily randum demand using randum 
number generator within maximum demand and minimum demand. 
STEP (2) Produce a main program to solve the situation of handout 
with the simulation results including a order quantity and a reorder 
point. Make a very user-interactive program for input/output. Get 
a output with similar format of example. 
STEP (3) Produce an alternative decision(solution) if demand will 
increase 20% and all of the costs will increase 10% at the next 
year, Jan. 1992. 
STEP (4) Develop a subprogram to fine Qo with 'EOQ' model. Compare 
the result with previous model. 

[Task's of inventory control : ] 
1) Complete the formulae in each cell(####) of inventory system 

with the same format of handout. 
2) Simulate your inventory control system by the controllable 

inputs (more than 5 runs in each set of controllable variables 
(Reorder point, fixed order quantity) and keep each total cost 
for the calculation of normalized cost) with multi-runs. 

3) Analyze and decide your optimal inventory strategy to minimize 
the total inventory cost. 

4) Develop your own EOQ model for order quantity instead of fixed 
order quantity, and simulate with this situation. 

5) Compare with these two situations for your optimal inventory 
policy. 

[ Submit the following outputs; ] 
(1) Program list(:.FOR or .C) including main and three subprograms. 
(2) Program output(:.OUT) with a similar correct formats of handout. 
(3) Flowchart and raw hand-writing code for program design. 
(4) Data collection sheets of programming task experiment. 
(5) Statistical data analysis of your experimental data using given 

analysis form. (Mean, Variance, Percent of frequency & 
correction time for each mode, Regression analysis with 
frequency and correction time.) - by supervisor 
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Sub]##: 91P4-B_ Name; IMSE 91-PROJ4-B 

SIMULATION INPUTS 
EXTERNAL ENVIRONMENT: 

MIN DEMAND= 
MAX DEMAND= 
BEGIN INV = 
SAFETY INV= 
ORDER COST= 
HOLD COST = 
SHORT COST= 

0 UNITS/DAY 
0 UNITS/DAY 
0 UNITS 
0 UNITS 

00.00 $/ORDER 
00.00 $/UNIT/DAY 
00.00 $/UNIT/DAY 

CONTROLLABLE INPUTS: 
REORDERED PT= #### UNITS 
ORDER QUANT = #### UNITS 

MULTI-RUN/INPUT SET: 
MIN RUNS = 5 RUNS 

SIMULATION OUTPUT 
ONE RUN: 

AVERAGE DEMAND= 
TOT ORDER COST= 
TOT HOLD COST = 
TOT SHORT COST= 
TOTAL COST 

# # # # . # #  
# # # # . # #  
# # # # . # #  
# # # # . # #  
#### .##  

UNITS/DAY 
$ / MONTH 
$ / MONTH 
$ / MONTH 
$ / MONTH 

MULTI-RUN ANALYSIS: 
RUN COUNT = # RUNS 

NORMALIZED COST(NCOST) is based on 
average daily demand for month. 

NORM. COST: ($/UNIT/DAY) 
NCOST MEAN: ($/UNIT/DAY) 
NCOST STD DEV:($/UNIT/DAY) 

INVENTORY SIMULATION 
DAY INVENT DEMAND ORDER ORDCOST HOLDCOST SHRTCOST 

1 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

2 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

3 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

4 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

5 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

6 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

7 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

8 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

9 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

10 "  # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

11 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

12 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

13 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

14 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

15 #### # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

16 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

17 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

18 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

19 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

20 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

21 # # # #  # # # # •  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

22 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

23 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

24 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

25 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

26 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

27 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

28 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

29 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

30 # # # #  # # # #  # # # #  # # # # . # #  # # # # . # #  # # # # . # #  

Total: 
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[ Subject Calibration Factors & Evaluations:] 

Subject #: Name: 

Score: 
1. Programming experience: /5 

. Programming experienced years: /5 

. Recurrence of programming: /5 

. Project scale involved: /5 

2 .  Knowledge background: /5 
. Knowledge of programming language: /5 
. Familiarity with hardware: /5 
. Familiarity with operating system: /5 

3. Intelligence: /5 
. Problem solving ability; /5 
. Creativity of entire approach: /5 
. Requirement understandability: /5 
. Recognition of project process: /5 

4. Experiment attitude: /5 
. Concentration to task: /5 
. Commitment to regulation: /5 
. Preparation effort to task: /5 

5. Work environmental conditions to subject; /5 
. Entire condition of work station; /5 
. Noise, temperature, humidity, etc.: /5 
. Subject's physical conditions: /5 
. Extra mental, psychological stress; /5 

Total score; /25 

Average score: /5 
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[ Rating Analysis of Subject Calibration Factors & Evaluations:] 

Name: S.S #: 
( Last ) ( First ) 

* 1 2 3 4 5 
poor< > strong related 

1. Programming experience: 
. Programming experienced years: 
. Recurrence of programming: 
. Project scale involved; 

2. Knowledge background: 1 2 3 4 5 
. Knowledge of programming language: 1 2 3 
. Familiarity with hardware: 1 2 3 
. Familiarity with operating system: 1 2 3 
. Educational background of requirement: 1 2 3 

3. Intelligence: 
. Problem solving ability: 
. Creativity of entire approach: 
. Requirement understandability: 
. Recognition of project process: 

4. Experiment attitude; 
. Concentration to task; 
. Commitment to regulation: 
. Preparation effort to task; 

5. Work environmental conditions to subject: 1 2 3 4 5 
. Entire condition of work station; 1 2 3 
. Noise, temperature, humidity, etc.; 1 2 3 
. Subject's physical conditions; 1 2 3 
. Extra mental, psychological stress: 1 2 3 

1_2 3 
1 2 3 
1 2 3 

1_2 3 
1 2 3 
1_2_3 
12 3 

12 3 
1_2__3 
1 2 3 
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