
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1992

Common-cause analysis in human-software
interaction: system design, error control
mechanism, and prevention
Peom Park
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Park, Peom, "Common-cause analysis in human-software interaction: system design, error control mechanism, and prevention "
(1992). Retrospective Theses and Dissertations. 9808.
https://lib.dr.iastate.edu/rtd/9808

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9808?utm_source=lib.dr.iastate.edu%2Frtd%2F9808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 9220979

Common-cause analysis in human-software interaction: System
design, error control mechanism, and prevention

Park, Peom, Ph.D.

Iowa State University, 1992

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

Common-cause analysis in human-software interaction: system design,

error control mechanism, and prevention

by

Peom Park

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Industrial and Manufacturing Systems Engineering
Major: Industrial Engineering

Approved^^ Members of the Committee:

In Charge of Major Work

For

For the Gradyde College

Iowa State University
Ames, Iowa

1992

Copyright © Peom Park, 1992. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

i i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

CHAPTER 1. INTRODUCTION 1

Overview 1

Multi-Version Redundant Software Systems and the Common-Cause Effect

in Human-Software Interaction 4

Literature Search 6

Definition of Problems and Terminology 8

Problem situation with common-cause effect 8

Scope of the problem 10

Common-cause failure, failure, errors, and reliability 11

CHAPTER 2. SYSTEM INTERACTIONS AND INFORMATION

PROCESSING IN SOFTWARE DEVELOPMENT 15

Human-Software System Interactions 15

The software engineer and the programming task 17

Typical failure mechanisms among human programmers, the operating

system, and hardware systems 18

Principles of human-software interaction 21

Guidelines of modeling in human-software interaction systems 24

www.manaraa.com

i i i

Human-Software Information Processing Systems 25

Human sensory capacity and stimulus response compatibility 25

The information channel of limited capacity 28

Time-shared systems 32

Knowledge-Based System Interaction 34

Knowledge-based interaction systems required by an adaptive human-

software interface 34

Fuzzy set application to knowledge-based human-software interaction 37

Software Development System 39

Specifications of requirements and tasks 39

Software development system design 43

Program coding 45

System validation of human-software interaction 46

Fault-tolerant human-software interaction system 47

CHAPTER 3. COMMON CAUSE ERROR AND THE HUMAN

RELIABILITY FUNCTION 49

Human Error and Reliability in Human-Software Interaction 49

Stress characteristics and stress check list factors in human-software

interaction 50

Rook's model of human error occurrence 53

Human error estimates and reliability function 54

Technique for Human Error Rate Prediction (THERP) 55

Human-software systems reliability 58

Common Cause Failures in Human-Software Interactions 59

www.manaraa.com

iv

Common-cause failure analysis of redundant systems 61

CHAPTER 4. A COMMON CAUSE MODEL AND EXPERI

MENTAL DESIGN IN HUMAN-SOFTWARE INTERACTION 65

Common-Cause Model and Function 65

Common-cause model 65

Common-cause function 66

Consideration factors and environmental conditions of human-software

interactions 70

Common-Cause Error Protocol and Common-Cause Factors 71

Identification of common-cause error protocol 71

Pattern recognition error modes 74

Programming behavior domain error modes 76

Experimental Design and Procedure 80

General description of experiment 80

Problems and hypotheses of experiment 84

Procedure and method of experiment 85

CHAPTER 5. COMMON-CAUSE ANALYSIS AND RESULT REP

R E S E N T A T I O N . . . 9 4

Analysis of Subject Task Data 94

Common-Cause Mode-Oriented Data Statistics 98

Common-cause error mode data and analysis table 98

Value of the common-cause function and simulated rating 117

Mapping geometrical vector evaluation in hexahedron contours 122

Historical common-cause error recovery time zone 126

www.manaraa.com

V

Transition relationship diagram and grouping of major common-cause

factors 130

Correlation and regression analysis 132

General observations and causal factors of common-cause error domain

in human-software interaction 139

Common-Cause Error Control Mechanism and Prevention 142

Error control mechanism and environment 142

Allocation of function and system interaction 144

Design analysis in human-software interaction 146

Knowledge-based human-software interaction and prevention 147

Control of common-cause factors of incompleteness and uncertainty . 148

Improving software productivity 150

CHAPTER 6. CONCLUSION 152

Summary 152

Conclusions 156

BIBLIOGRAPHY 158

APPENDIX A. THE COMMON-CAUSE PRINCIPLE 168

Common Cause and Rational Belief 168

The Principle of the Common Cause 169

Statistical Dependence 170

APPENDIX B. EXPERIMENTAL MATERIAL AND REQUIRE

MENT SPECIFICATIONS 172

www.manaraa.com

vi

LIST OF TABLES

Table 5.1: Subject Task Data in A Common-Cause Model Experiment . 96

Table 5.2: Weight Rating Factors for Subject Evaluation: Interview Search

from Programming Experts 97

Table 5.3: Subject Level Evaluation with Rating Factors 99

Table 5.4: Common-Cause Error Mode and Experimental Data Analysis:

Total 100

Table 5.5: Common-Cause Error Mode - Data Analysis: Language-C . . 105

Table 5.6: Common-Cause Error Mode - Data Analysis: Language-Fortran 106

Table 5.7: Common-Cause Error Mode - Data Analysis: Requirement-A 107

Table 5.8: Common-Cause Error Mode - Data Analysis: Requirement-B 108

Table 5.9: Common-Cause Error Mode - Data Analysis: Expert Level 1 109

Table 5.10: Common-Cause Error Mode - Data Analysis: Expert Level 2 110

Table 5.11: Vector Evaluation with Rating Simulation 121

Table 5.12: Frequency of Transition Load and Relationship between

and Pj 130

Table 5.13: Frequency of Transition Load and Relationship between

and 132

www.manaraa.com

vii

Table 5.14: Frequency of Transition Load and Relationship between Pj

and 133

Table 5.15: Pearson Correlation Coefficients / Prob > | R | under HQ:

Rho=0 / n = 10 134

Table 5.16: ANOVA Test for Variance Analysis (Model: Frequency = Re

quirement Level Language; Dependent Variable: Frequency) . 135

Table 5.17: ANOVA Test for Variance Analysis (Model: CorrectionTime

= Requirement Level Language; Dependent Variable: Correc

tionTime) 136

Table 5.18: ANOVA Test for Variance Analysis (Model: ComputingTime

= Requirement Level Language; Dependent Variable: Com

putingTime) 137

Table 5.19: Regression Analysis (Dependent Variable: Frequency) 138

Table 5.20: Regression Analysis (Dependent Variable: Design Time) . . . 139

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1: The Research Design Scheme in Human-Software Interaction 3

Figure 1.2: Event Diagram of A Multi-Version Redundant Software Sys

tem in Human-Software Interaction 9

Figure 2.1: Three Components of Human-Software Interaction 16

Figure 2.3: Representation of Human-Software Information Processing Sys

tems 26

Figure 2.7: Software Development and System Interactions 40

Figure 2.8: Common-Causes and Recovery Zones 41

Figure 3.1: Performance Effectiveness as a Function of Stress Level. ... 51

Figure 3.2: Probability Tree Diagram for a Programming Task 56

Figure 4.1: Schematic Design Stages of the Common-Cause Model 67

Figure 4.2: Three Common-Cause Error Modes and Evaluation Variables 68

Figure 4.3: Programming Behavior Error Domain Mode 77

Figure 4.4: The Experimental Procedure in Human-Software Interaction 83

Figure 5.1: Portion of Identification of Common-Cause Error Mode . . . 101

Figure 5.2: Portion of Pattern Recognition of Common-Cause Error Mode 102

Figure 5.3: Portion of Behavior Domain of Common-Cause Error Mode . 103

www.manaraa.com

ix

Figure 5.4: Portion of Frequency in Identification of Common-Cause Er

r o r M o d e I l l

Figure 5.5: Portion of Frequency in Pattern Recognition of Common-

Cause Error Mode 112

Figure 5.6: Portion of Frequency in Behavior Domain of Common-Cause

Error Mode 113

Figure 5.7: Portion of Correction Time in Identification of Common-Cause

Error Mode 114

Figure 5.8: Portion of Correction Time in Pattern Recognition of Common-

Cause Error Mode 115

Figure 5.9: Portion of Correction Time in Behavior Domain of Common-

Cause Error Mode 116

Figure 5.10: Portion of Occurrence Time in Identification of Common-

Cause Error Mode 118

Figure 5.11: Portion of Occurrence Time in Pattern Recognition of Common-

Cause Error Mode 119

Figure 5.12: Portion of Occurrence Time in Behavior Domain of Common-

Cause Error Mode 120

Figure 5.13: Identification of Common-Cause Error Mode: Geometric Con

figuration 123

Figure 5.14: Pattern Recognition of Common-Cause Error Mode: Geomet

ric Configuration 124

Figure 5.15: Behavior Domain of Common-Cause Error Mode: Geometric

Configuration 125

www.manaraa.com

X

Figure 5.16: Identification of Common-Cause Error Mode: Recovery Time

Zone (Units: portion (%) of occurrence time.) 127

Figure 5.17: Pattern Recognition of Common-Cause Error Mode: Recov

ery Time Zone (Units: portion (%) of occurrence time.) . . . 128

Figure 5.18: Behavior Domain of Common-Cause Error Mode: Recovery

Time Zone (Units: portion (%) of occurrence time.) 129

Figure 5.19: Transitions Relationship Diagram and Grouping of Common-

cause Error Modes 131

Figure 5.20: Common-Cause Error Control Mechanism 143

Figure 5.21: Common-Cause Error Control Environment and Human-Software

Interaction 145

www.manaraa.com

xi

ACKNOWLEDGEMENTS

I would like to express my appreciation to many persons who assisted me in

this research and in the completion of my Ph.D study. Dr. S. Keith Adams, my

major professor, deserves special recognition for his encouragement and guidance

throughout my research and study life. Without his assistance, consideration, and

patience, this research never would have been accomplished. Dr. Way Kuo who waa

my former advisor and is one of the committee members, is responsible for providing

the stepping stones on which I began my study towards a doctoral degree. His unique

and convincing perceptions of the software reliability proved to be a great source of

motivation. I truly indebted much to them for these.

I would like to thank my committee members: Dr. Géraldine Montag, Dr. II. T.

David, Dr. William J. Kennedy, Dr. Doug W. .Jacobson, all of whom provided valid

criticisms and comments concerning through research progress to my final disserta

tion. The special thanks go to Dr. John Jackman, Dr. Jo Min and many colleagues

in Industrial and Manufacturing Systems Engineering to advise and to support for

the experiment and friendship.

Last, but most importantly, I want to acknowledge the members of my family,

parents and brothers, for providing my passion and study. Ockran Park, my wife,

was wonderful support to this achievement during all study periods.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Overview

This research introduces the analysis and a new design domain of common-cause

human error in human-software interactions. This study is concerned with common-

cause human domain errors during software system development. This includes the

contents, conditions, and their characteristics in human-software interaction. It also

concerns interactions between the human, who is presumed responsible for overseeing

the software system, usage of the software system and software development. Also

of concern is how to reduce and to prevent human errors in software development

systems.

In these days common-cause failure studies [76] [30] [116] in the human-system

area have been receiving wide attention especially in the software systems area. This

is because the assumption of statistically independent failure of redundant systems

is easily violated in real human-software interaction processing systems. Since the

software components are not independent of each other in regard to failure behavior,

software redundancy does not improve reliability except in multi-version software de

velopment. Multi-version software system development is often requested to improve

of reliability, especially in ultra-high reliability systems such as nuclear power control,

air traffic control, space shuttle missions, and war games. The major common-cause

www.manaraa.com

2

errors found in this research can contribute strongly to internal common-cause fail

ure effects in a multi-version software development project. Human error, the human

reliability function, the principle of the common-cause and its effect, and the proba

bilistic concept of common-cause are reviewed in this work.

There are three main components in human-software interaction; the human as

a software engineer, software as an operator, and the hardware system as a software

development work station. It is important to analyze the characteristics and the

environment of each subsystem. A software development system will be derived to

analyze the task of software development. Human-software information processing

will be discussed in order to clarify the human behavioral process in human-software

interaction.

The common-cause error model includes three analytical reasoning categories

and a common-cause function established in terms of human-software information

processing systems, human error mechanisms, and cognitive control domains. It is

used to characterize the human factors mechanisms behind typical categories of errors

considered as occurrences of human-software task mismatches.

An experiment to develop an improved design concept, its procedure, and anal

ysis was conducted to define common-cause errors in the human domain of software

development. The major role of this experiment is to find contents, environments,

and conditions of common-cause human domain errors, and a design procedure for

the analysis of common human behavioral factors. Overall research design scheme is

shown in Figure 1.1. In this experiment, each software development by a subject,

and the effect of common-cause failure are analyzed to evaluate human-software in

teraction and to improve software development productivity. Finally, a prevention

www.manaraa.com

3

Connon-Cause Analysis 8.
Human-Software Interactions

Situation, Environnent
& Conditions

Variables, Contrôlable,
8. Uncontrolable Factors

Preparation oF Data
Collection Materials

dback
r n n t r n i

Function
Subject Calibration
Task Consultation

Training and testing

Pilot Experiment

Data Collection.
Validation •
Analysis

Executive Experiment

Evaluatlon-

Common-Cause Failure
Presentation

Common-Cause Failure Model

Human-SoFtware Information
Processing

Human Error Mechanism

Knowledge-Based Engineering

Common-cause Function
in Human-Software
Interactions

ControK\.
Mecha^m/

Mapping Error Category

Common-Cause Failure Errors

Failure Recovery Mechanism

Prevention Methods

Figure 1.1: The Research Design Scheme in Human-Software Interaction

www.manaraa.com

4

method for the common-cause human error control mechanism is introduced with

aspects of knowledge-based engineering, fuzzy set application, and intelligent design

technique.

Multi-Version Redundant Software Systems and the Common-Cause

Effect in Human-Software Interaction

A failure in programming task can occur during any phase of software develop

ment. Potential failures can sometimes be found by software engineers as the result of

design review, and code proof reading. A software failure is a departure of operation

from specified requirements in setting up or modifying a program. The common-

cause effect, as a reliability component of the common-cause failure system, serially

connected with other system components, in human-software interaction, is affected

by internal common-cause human domain errors.

The component structure of AND-OR rules in a out of n component structure

assumes that failures of different components are independent of each other [76]. This

means that there can be no failures that result from the same cause [116]. Reliabil

ity is often increased in hardware systems by providing redundant components. In

software systems, the situation is different. In hardware systems, the causes of fail

ure associated with physically individual but functionally identical units in hardware

component systems, are frequently independent. This phenomenon does not occur in

software systems because multi-copies of a program are identical not only in function

but also in the faults that can cause failures.

However, there is a possible exception in the situation of software development

if multi-version software components are developed by different teams. There is some

www.manaraa.com

5

possibility that many faults introduced may be independent of each other with redun

dant software components developed by separate teams following the same specific

requirements. This described by Knight et al. [56] who point out experiments in

multi-version programming which seem to indicate that failures in different versions

are clearly not completely independent of each other. They do not appear to be all

common either. Multi-version programming may well improve the reliability level,

but not to the extent totally independent components would. Having totally in

dependent components may be cost effective for critical modules of systems with

ultra-high reliability requirements, such as nuclear power plants, air traffic control

systems, space shuttle missions, and war games.

The common-cause effect is a system component that is not well recognized. It is

serially-connected with the human-software system, operating system, and hardware

system. Common-cause failure effect can be defined as the consequences a common-

cause failure mode has on the operations, function or status of an item/task. Failure

effects are classified as local effect, next higher level and end effect [4]. Here, common-

cause failure can be defined as the simultaneous failure of more than one component,

or more than one component failing due to a single cause [42]. It is also defined by I.

A. Watson [116] as inability of multiple, first-in-line items to perform as required in a

defined critical time period, due to a single underlying defect or physical phenomena,

such that the end effect is judged to be a loss of one or more systems. Human aspects

of internal common-causes are also present in common-cause effect at human-software

interactions of multi-version software development. Because this common-cause effect

affects the productivity and the development cost of a software project, removal

common causes is very important in improving reliability in an ultra-high reliability

www.manaraa.com

6

software project.

Literature Search

Deborah Mitta [75] presented a methodology for quantifying expert system us

ability which is considered from a designer's prospective. A linear multivariate func

tion for measuring usability is described and procedures for selecting function vari

ables are provided. The usefulness of the usability function as a design tool is in

vestigated. The six variables for expert useability are: user confidence, the user's

perception of difficulty, correctness of solution, the number of responses required of

users, inability of expert system to provide a solution, rate of help requests.

Thomas A. Thayer et al. [112] presented results of a study of data, principally

error data, collected from four software development projects. This study was de

signed to determine what might be learned about various types of errors in software,

the effectiveness of the development and test strategies in preventing and detecting

errors, and the reliability of the software itself. This study provided guidelines for

data collection and analysis on other projects.

Albert Endres [33] classified error into six groups; machine error, user or operator

error, suggestions for improvement, duplicate, documentation error, and program er

ror. Program errors were classified as machine configuration and architecture (10%),

dynamic behavior and communication between processes (17%), functions offered

(12%), initialization (8%), addressability (7%), reference to names (7%), counting

and calculating (8%), and others (16%). It was possible to distinguish causes for

errors in 6 categories; technological, organizational, historical, group dynamic, indi

vidual, and other.

www.manaraa.com

7

Edward A. Youngs [121] discussed systematizing the description of errors that

programmers make by collecting protocol data from 42 programmers. Eight func

tionally defined constructions accounted for more than 75 percent of all 1189 errors

committed: (1) allocation (16%), (2) assignment (29%), (3) iteration (10%), (4) I/O

formatting (6%), (5) other I/O (8%), (6) parameter/subscription list (5%), (7) con

ditional execution (5%), (8) vertical delimiter (4%).

Jens Rasmussen [90] classified cognitive control domains: skill, rule, and knowledge-

based behavior. He also described psychological mechanisms in the area of human-

task mismatches.

Modeling and predicting human error was studied by David D. Woods [120].

This research included a limited rationality approach and some directions in error

modeling.

James Reason [92] studied a general framework for locating the principal limita

tions and biases giving rise to the more predictable varieties of human error. Three

types of error were identified: skill-based, rule-based, and knowledge-based mistakes.

Common-cause failure in system interaction and statistical theory are discussed

in the following papers: Review of Common-cause Failures by I. A. Watson [116];

Rational Belief and the Common-Cause Principle by Bas C. Van Fraassen [37]; Causal

Forks and Common Causes by Wesley C. Salmon [102]; Causal Inference and Causal

Explanation by Clark Glymour [38].

www.manaraa.com

8

Definition of Problems and Terminology

Problem situation with common-cause effect

The mission of a specific software development project is to set up system compo

nents of human-software interaction. Each configuration is composed of a computer

work station, a Central Operating Processor (COP) whose computer assigns and

controls all work at the local working stations, and a Multi-Version Software (MVS)

development load. One approach to software design research using such a system that

tends to be expensive, is to install two independent versions of MVS developed by

two completely separate software development teams/engineers. The common-cause

effect affected by internal common-cause human domain errors is determined using

redundant components in this case as in Figure 1.2.

In the given example [76], the system reliability is

(0.99)(0.95){1 - [1 - (0.98)

If there are no common-cause error effect , then ?• = 0 and Rx becomes 0.809(Aa; =

0.0662 failure/cpu hr.). However, the chances are that r is relatively large, that is,

similar common errors are made by each team. If r = 0.5, then Rx = 0.922(Ax =

0.0254 failure/cpu hr.). In the case of r = 0, the development cost for the MVS

software will be about $580,000 ($290,000 for each copy of the software). Similarly,

if r = 0.5 the software development cost will be about $1,150,000. An additional

$250,000 will be incurred for the second unit of MVS hardware. The total cost will

be $830,000 or $1,400,000, depending on the value of r in the Musa's study.

www.manaraa.com

9

HVS-1 MVS-1

sy

CDP COP

sv

&•

R=0,99 R=0,95

R=fl,98 Rx

l-CAUSE

EFFECT

Rx

-0

HVS-2 MVS-2

SV

Figure 1.2: Event Diagram of A Multi-Version Redundant Software System in Hu
man-Software Interaction

www.manaraa.com

10

Scope of the problem

This study deals with the problem of common-cause human domain error in

human-software interaction, that is, the major causal factors in common-cause fail

ure effects on the multi-version software development. Questions to be addressed

include: how to analyze reasons for common-cause errors, how to design common-

cause error control mechanisms, and how to define methods for their prevention.

Specially, the following questions need to be addressed:

(1) What are common-cause failures and their internal common-cause human domain

errors in human-software interactions?

(2) What are the contents and conditions of human-based errors affected by a common-

cause effect in a multi-version redundant software development system ?

(3) How can internal common-causes by human-based errors be reduced and pre

vented in the software development?

(4) How can software engineers be aided by a human-based common-cause error con

trol mechanism in the design of high reliability software system?

(5) How should interactive systems between the human, who is presumed responsible

for overseeing software systems, and software development efforts which are human

oriented be designed for high reliability efficiently?

Some of the requirements and motivations for common-cause error analysis that

can be extended to human-software error control and prevention in software devel

opment. They are:

(1) There must be a coherent methodology and processing mechanism to control and

guide a software project to successful completion.

(2) A new design-based knowledge for multi-version redundant software development

www.manaraa.com

11

is needed to train experienced software engineers.

(3) A large portion of experienced software engineers do not have a sensitivity to

human-software interactive error mechanisms and methods of preventing errors.

(4) Software development has resulted in many incorrect human programming be

haviors which have led to low quality software and excessive costs.

(5) There are unique aspects of software development without direct hardware/operation

analogs; thus not all the training learned about past hardware/operation development

is applicable to the software development task.

Common-cause failure, failure, errors, and reliability

Common-cause failure is defined as "the simultaneous failure of more than

one component [42]." Here, a failure of a component or subsystem is said to be a

propagating failure when the failure changes the programming conditions, environ

ments or requirements in such a way as to cause the failure of other components

of software development. It is said to be a common-cause failure if more than one

component fails due to a single cause (usually assumed to be external to the pro

gramming conditions of the human-software information processing system). Such

common causes may be from the human domain attributable to psychological behav

ior or to physiological capacity, or to external disruption by man-made or natural

events.

In hardware reliability theory where multiple components fail due to a single

cause, a common-cause failure is said to have occurred. This can easily be extended

to software components. A straightforward method to incorporate these common-

cause failures is given in D hi lion [30]. Let r be defined as the fraction of component

www.manaraa.com

12

failures that are common-cause. Each component failure intensity A is the sum of an

i n d e p e n d e n t f a i l u r e i n t e n s i t y (1 — r) A a n d a c o m m o n - c a u s e f a i l u r e i n t e n s i t y r X .

A failure of a human-software interaction system occurs when that system does

not perform its servi ce / execution in the manner specified, whether because it is un

able to perform the service/execution at all, or because the results and the external

state^ are not in accordance with the specifications. Failure is "a departure of the

external results of program operation from program requirements on a run [76]." A

departure is the occurrence of a discrepancy between the desired output result stated

in the requirement specifications for the specific run and the actual output result.

Therefore, it represents a defect in a transformation. The output result is the set

of values of output variables with a program execution. A discrepancy is defined

as "the difference between the actual value of an output variable with an execution

and the value expected by the requirement specifications [76]." The time of a failure

is the time at which the discrepancy first occurs. The type of failure is defined as

the conjunction of both run type or input state and discrepancy. The allocation of

causes to human or components in human-software interaction systems is a purely

pragmatic question regarding the stop rule applied for analysis after the fact.

Fault is defined as a defective, missing, or extra instruction or set of related

instructions that is the cause of one or more actual or potential failure types. There

cannot be multiple faults causing a failure. The entire set of defective instructions

that is causing the failure is considered to be the fault. The requirement that the

instructions be related is specified so that the count of the number of faults cannot be

^ The external state of a system is the result of a conceptual abstraction function
applied to its internal state. The internal state of a system is the aggregation of the
external states of all its components [73].

www.manaraa.com

13

changed arbitrarily by a regrouping of instructions. The characteristics of a fault are

[76]: (1) it is the cause of deviation from a standard; (2) it is found on the causal path

by tracing backwards from this effect; (3) it is accepted as a familiar and therefore

reasonable explanation; (4) a cure is known.

Human error consists of any significant deviation from a previously established,

required or expected standard of human performance, that results in unwanted or

undesirable time delay, difficulty, problem, trouble, incident, malfunction, or failure

[85]. In another way, it is described as the failure to carry out a specified task (or the

performance of a forbidden action, or improper performance of a task) that could lead

to disruption of scheduled operations or result in damage to property and component.

Errors can arise from many causes, but most of them can be grouped in one of four

categories [76]: communication, knowledge, incomplete analysis, or transcription. In

real situations where arguments of precisely what is or is not a human error are less

important than what can be done to prevent them, the operational definition may be

restricted to those errors (a) which occur within a particular set of activities, (b) which

are of some significance or criticality to the primary operation under consideration, (c)

involve a human action of commission or omission, and (d) about which there is some

feasible course of action which can be taken to correct or prevent their reoccurrence

[22].

Human reliability is defined as "the probability of accomplishing a job or task

successfully by humans at any required stage in a system operation within a specified

minimum time limit [28]." Here, human-software reliability can be defined as the

probability of successful performance with human-software task ability and reliable

systems at any required stage in an operation of the human-software interaction

www.manaraa.com

14

system within a specified duration of time.

Human-Software Information Processing system is defined by a network

system of human and software components capable of accepting information, pro

cessing it according to a plan and a control, and producing the desired results or

goals.

www.manaraa.com

15

CHAPTER 2. SYSTEM INTERACTIONS AND INFORMATION

PROCESSING IN SOFTWARE DEVELOPMENT

Human-Software System Interactions

Human-software interaction represented by Figure 2.1 consists of three elemen

tal components: human, software, and hardware. It is the software that gives the

computer its individuality; the computer then works as a link to connect the system

components. Considerable effort has been expended to establish theories and prac

tices for attaining hardware reliability. One reason is that hardware is more general

than the software.

Software tends to be specific to each system, although sometimes efforts are made

to utilize standard program packages that have been verified in other applications.

In contrast to hardware, only small samples of similar software are available and it

is hard to verify inferences concerning reliability.

In identifying the scope of human-software interaction, it is well to keep in mind

the meaning of an interaction, a link or a connection among the three components.

The interaction can be addressed on three sides of the diagram in Figure 2.1.

(1) The human side of the interaction includes:

Personnel availability: manning levels and work levels

Personnel capability: skills and skill levels

www.manaraa.com

16

HUM^N-COMPUTER

INTE^ACE SYSTEM

HUMAN-SDFTVARE

INTERFACE MSTEM

SYSTEMS OUTPUT

HARDWARE SOFTWARE
SYSTEMS OPERATION

Figure 2.1; Three Components of Human-Software Interaction

www.manaraa.com

17

Personnel performance: completion of assigned tasks

Personnel productivity; quantity produced per unit time

Personnel safety.

(2) The software side of the interaction includes:

Specification of requirements

Design: software design, process design

User-friendliness: user oriented, easy use, objective oriented

Interface with hardware: hardware capacity with software size

Software productivity: efficiency, effectiveness.

(3) The hardware side of the interaction includes:

Information displays: the information displayed and the display format

Display characteristics: symbol size, shape, color, density, etc.

Data organization: architecture producing hierarchy of data specificity

Dialogues: command modes, error messages, prompts, alerts, queries, etc.

Procedures: task sequences, decisions, and decision rules

Data entry devices: for data entry, manipulation, and designation

Documentation: hard copy manuals and aids.

The software engineer and the programming task

Will the software engineer solve a given problem? How-well will he or she be

able to perform that task, and how will this system be well-adapted to achieve the

intended goal? The answers depend on the following critical factors: the nature of

the task, the availability of the needed expertise, and the ability to analyze and to

perform the task in such a way that a computer program, using limited levels of

www.manaraa.com

18

reasoning, can work out what has to be done.

The conditions will tend to rule out certain applications from the start; the

software engineer should be able to perform the task, know how he or she performs

thé task, be able to explain how to perform the task, have the time to explain how

to perform the task, and be motivated to cooperate in the enterprise.

Even if the above conditions are met, there may be features of the task that

limit the extent that skills can be mechanized. This occurs, for instance, if the

task involves complex sensory-motor skills beyond the scope of current technology

in robotics, computer vision, and high technological software operations; also if the

task involves common-cause reasoning or arbitrary amounts of everyday knowledge.

To be effective would also require an enormous amount of knowledge about the

world: knowledge of objects and their properties, software engineers (or teams) and

their motivations, physical and psychological causality. The fact is that only the most

rudimentary notions about how to impact this kind of common-cause, knowledge to

computer software work exist. So any task that is not sufficiently self-contained to be

encapsulated in a finite set of particular facts and general rules is definitely beyond

the state of the art.

Typical failure mechanisms among human programmers, the operating

system, and hardware systems

There are four typical failure mechanisms in human-software interaction, poor-

quality fabrication, human-software design, overload of the component, and wear-out

among the three components: human, software system, and hardware system [104].

The following examples are illustrative:

www.manaraa.com

19

(1) Poor-quality fabrication:

(la) Human:

Reload control button pushed in error during operation.

Wrong disk mounted on drive by operator.

Radar control switch put into track position by operator rather than

scan position.

(lb) Software:

Typographical error in entering an instruction which eludes compiler

checks.

Wrong version of a subroutine included by mistake.

Program has small incompatibility with operating system or hardware.

(Ic) Hardware:

Bad solder joints.

Defective component installed.

Mechanical misalignment.

(2) Human-software design:

(2a) Human:

The human is required to enter data in response to a system request. One

of the requests is ambiguous and wrong data are entered.

Assume that following a system crash, the operator must reenter certain

key data. If the key sequence is illogical many errors will occur.

The operator follows an incorrect explanation in the operator's manual

and inadvertently clears all memory.

(2b) Software:

www.manaraa.com

20

When the operator returns from subroutine A to the main program he

or she fails to clear all registers as they should.

The THEN ELSE branches are mistakenly interchanged in

an IF statement.

The series expansion used for a special mathematical function does not

converge for certain values.

(2c) Hardware:

Component with too low a rating is specified.

Metal parts are exposed to a corrosive atmosphere.

When an address is loaded from the front panel of a minicomputer,

it erroneously clears the accumulator.

(3) Overload of a component:

(3a) Human:

An air traffic controller cannot handle more than 50 targets without

overloading his or her vigilance capacity and making many errors.

The operator forgets the right sequence of commands on occasion

because there are too many steps.

The human cannot react fast enough to enter control commands in

an emergency situation.

(3b) Software:

A timesharing system designed to handle 24 terminals performs poorly

when over 20 terminals are connected and its crash rate rises.

The input module of a text-editing system cannot keep up with a

very fast typist.

www.manaraa.com

21

An air traffic control system has a capacity of 100 planes. When

more than 100 planes are entered, targets on the screen disappear

without warning.

(3c). Hardware:

A capacitor with a maximum rating of 50 V is used in a circuit where

100-V transients occasionally occur.

An unexpected heavy load on a gear train breaks off some gear teeth.

The hardware cannot keep up with an input of 300 band, even though

specifications call for operation at this rate.

(4) Wear-out:

(4a) Human:

Possibly errors due to cumulative fatigue.

(4b). Software:

No analogous effect.

(4c). Hardware:

A mechanical clutch begins to slip after 5000 hours of operation.

The insulation on certain wires cracks after 10 years of survival,

causing short circuits.

High humidity eventually causes leakage failure of certain types

of integrated-circuit packages.

Principles of human-software interaction

There are six intellectual principles of human-software interaction processing.

(1) The only way to adequately design a system is to build it. Brooks [20] describes

www.manaraa.com

22

his throwaway one rule, which is a statement on the limits on human intelligence,

or a more academic version of Murphy's Law ^. It implies, however, that software

development is an inherently iterative process.

(2) Software development is a logical rather than a physical system element. Soft

ware is developed or engineered; it is not manufactured like hardware, even though

the software factory concept recommends the use of automated tools, such as Fourth

Generation Techniques (4GT), for software development.

(3) Individual programmers have enormous differences in productivity. Although an

imperfect measure, lines of program produced per day is an obvious means of eval

uating output. By this measure the variations in output have been observed within

the same programming shop among programmers of similar background. Clearly, all

of these differences cannot reflect learned behavior.

(4) Software development costs are concentrated in the engineering of human-software

interaction. Reliability and error-content measures are the key factors for software

quality control and the software cost function. A much more costly class of errors

consists of those which are detected in the field. Boehm [13] studied the relative cost

of removing software errors, by phase of development as given in Figure 2.2^.

(5) The human brain has intrinsic limits on the complexity of human-software in

teraction problems with which it can efficiently deal. Halstead introduced concept

of software redundancy and program length now called by his name [40]. Tests have

shown that there is a desired level of redundancy for optimal absorption of infor-

^ In general Murphy's Law states that If anything can possibly go wrong with a
design, test, or experiment - it will [7].

^The data sources were IBM-SDD, TRW, GTE, and BELL LABS programs. The
upper and lower curves represent a 95 percent confidence interval [13].

www.manaraa.com

23

Preliminary Detailed Code and Integrate Validate Operation
design design debug

Phase in . wh ic ln . e r ro r i s de t ec t ed

Figure 2.2: The Relative Cost of Fixing Errors Versus Phase of Development [13]

www.manaraa.com

24

mation; being either too concise or too verbose inhibits understanding. However,

Halstead length^ is a concrete way of measuring the interactions of complexity and

length. He mentioned that humans have an upper limit to the Halstead length they

can handle. To deal with a problem requires reducing it to models of acceptable

Halstead length. This can be done by simply ignoring details or by subdividing a

problem into pieces, although this latter raises new, possibly very large costs of co

ordination.

(6) Human behaviors are very different between group and individual. Brooks [20]

observed that six programmers for one month are not the same as one programmer for

six months. It should not surprise economists familiar with the transaction costs of

coordinating efforts. Subsequent result from Brooks have established extreme trade

offs between complexity and elapsed time (an 8% increase in complexity requires a

doubling of staff, for example, according to one accepted rule).

Guidelines of modeling in human-software interaction systems

There are parallels between interaction modeling and software engineering pro

duced by Raduchel [88].

(1) Every good model is a properly specified model.

(2) Tools are vital to good modeling.

(3) The tasks of implementing the estimation and solution techniques are no longer

central to modeling.

(4) Modeling is usually a dynamic process with ongoing maintenance and manage

ment required.

^Halstead length equation; N = + -q^log^ [40]

www.manaraa.com

25

(5) The only way to adequately specify a model is to build it.

(6) Individual model-builders have tremendous variations in productivity.

(7) Few, if any, individuals can comprehend all the detail of a large model.

(8) Group modeling efforts are very different from individual efforts.

Human-Software Information Processing Systems

Human-Software Information Processing (HSIP) represented by Figure 2.3 is a

part of experimental psychology concerned with the basic research problem of how

information flows and is transformed within the human organism and software sys

tems. The Information Processing System in human-software interaction is defined

by a network system of human and software components capable of accepting infor

mation, processing it according to a plan and a control, and producing the desired

results or goals. Human information processing in engineering psychology or hu

man factors and computer data processing in software engineering are technologies

that try to improve the performance of human-software interaction systems in which

humans and softwares are each parts.

Human sensory capacity and stimulus response compatibility

A model developed by Welford [119] to identify skill mechanisms is presented

as Figure 2.4. The lines show information flow and the boxes denote identifiable

processing function.

The concept of Stimulus-Response Compatibility [36] is used to explain phenom

ena in reaction-time experiments, where spatial mappings of stimuli onto responses

are varied. The spatial geometry of stimulus and response arrays can be manipulated

www.manaraa.com

26

Perception of

Information
Output

Evaluation

Hunan-Software
Information
Processing

Human-Software

Interaction

Software
Execution or
Simulation

Decision for
Requirement
Specifications

Software Development

and System Control

Software

System Design

Figure 2.3: Representation of Human-Software Information Processing Systems

www.manaraa.com

27

in ways limited only by the software designer's ingenuity. The results of Pitts et al.

[36] can be indicated by noting that reaction time is fastest and error rates lowest

when there is a direct correspondence between the geometry of stimulus and response

arrays.

• E x t e r n a l O b j e c t

SENSE

ORGANS

RECEIVING

STIMULI

FROM

OUTSIDE

INTERNAL

SENSORS

SHORT

TERM

STORE

TRANSLATION

FROM

PERCEPTION

TO ACTION

CHOICE OF

RESPONSE

TPr-TTr

s/.
L O N G T E R M S T O R E

EFFECTOR

CONTROL

TfC TIT

S T O R E

—»

S T O R E

D I F F U S E A C T I V A T I O N S Y S T E M

AUTONOMIC

REACTORS

Figure 2.4; Hypothetical Block Diagram of the Human Sensory-Motor System [119]

The most common method of measuring S-R compatibility is to take a vote; that

is, several arrangements are portrayed, and people are asked to select the mapping

they find most desirable, called population stereotype. A slightly more convincing way

www.manaraa.com

28

of measuring S-R compatibility is to conduct an experiment; the fastest and most

accurate mapping is obviously the most compatible.

Investigations of S-R compatibility making use of sophisticated mathematical

treatments also focus upon properties of a hypothetical translation stage. Harm

et al. [41] plotted a Latency Operating Characteristic (LOG) - a function relating

Reaction Time (RT) to a measure of accuracy - for compatible and incompatible two-

choice reactions. The result was that compatibility affected the noise level inside the

translation stage, so that incompatible mapping caused elevations in correct and

error RT. However, Duncan [32] disagreed that individual S-R bonds were most

important and instead argued that systems of rules governed response generation

under various S-R mappings. With S-R compatibility it is easy to apply this study

to improving human productivity in any system that required operators to map the

stimulus information given in displays to a set of controls.

The, information channel of limited capacity

The Information Channel of Limited Capacity (ICLC) is the most important and

the most influential theoretical construct in human-software information processing.

The ICLC has developed within the areas of experimental psychology of reaction

time, attention, and memory. Broadbent [17] clearly states the applied origins of his

model: "In situations arising from technology our attention is compelled to the major

variables in human behavior, and we cannot ignore them in favor of some artificial

distinction. The researcher, remote from immediate practical pressures, may indeed

be free to study major variables in which at this instant society does not seem to

be interested; but he should not use this freedom in order to study minor variables,

www.manaraa.com

29

until there are no major ones within reach of our techniques. The necessity of some

relevance to real life is a worthwhile intellectual discipline."

Human-software information processing theory tells us that not only is a partic

ular stimulus important in human-software interactions but also is the set of stimuli

from which that particular stimulus was selected; that is, behavior is controlled by

events that did not occur on some particular occasion but might have occurred. It

can be determined whether the amount of information generated at the source is

the amount that reaches the receiver. One of the major question in determining the

information channel capacity is the amount of information per unit time that can

be transmitted through the human. Even though this amount varies by the coding

schemes used in specific tasks, an important theoretical fact is that some fixed upper

bound exists.

Figure 2.5 is the most lasting and influential component of Broadbent's [19]

model which represents the human operator in terms of the flow of information. A

selective filter mechanism protects the information channel of limited capacity. This

filter selects which elements of the buzzing confusion of the world available to our

senses gain entry. A model of attention with such a gatekeeper is now called an

early-selection model of attention, and there has been much dispute about how and

where sensitivity is imposed, even though there is general accord that selectivity is

an important characteristic of human-software information processing. However, this

filter model has weak points, such as weakening low priority information [114], and

making contact with memory.

Another kind of research supports the limited-channel information capacity,

based on the Psychological Refractory Period (PRP) effect analogous to the refrac-

www.manaraa.com

30

S T S
^ H E T

0 R •
R M R
T E

L C C
I A H
M P A
I A N
T C N
E I E
D T L

Y

E F F E C T O R S

—t: -TTT

System For varying
output until some
input is secured

7K

store of conditional
probabilities
of past events

Figure 2.5: The Original Limited-Capacity Channel Model [19]

www.manaraa.com

31

tory period of a single neuron. Broadbent [19] described this effect in terms of the

second stimulus queueing up while the channel was busy processing the first stim

ulus. However, it has been argued that similar reaction time delays also occurred

for the first stimulus [44]. Two kinds of information channel of limited capacity are

introduced éis follows:

(1) Single-channel capacity: Broadbent's [19] single-channel hypothesis was a fore

runner of modern information processing theories, especially those which make use

of limited central resources. This single-channel, limited-capacity system processes

stimuli in a strictly serial manner. Incoming stimuli compete for resources in the

sense that they compete for access to the channel in this model, with the capacity

of the channel defined in terms of the rate of information transmission. Reaction

time(i?^)^ is a linear function of the log2 P with definition of this single-channel ca

pacity by Hick [45] and Hyman [47].

(2) Multi-channel capacity: With multichannel capacity, the appropriate model of

the human in software systems is a system with a number of particular purpose pro

cessors and stores operating in parallel. Parallel processing is possible when tasks use

different processors, but sharing of a particular processor is not possible. Another re

sult is that capacity interference alone is not sufficient to account for the phenomena

associated with dual-task performance.

^Hick's law: RT = a + bT{s,r), reaction time is a linear function of stimulus and
response

www.manaraa.com

32

Time-shared systems

Time-shared systems involve the simultaneous performance of two separate and

independent tasks. The software system operator is required to perform his or her

tasks in operating systems together with his or her best ability. Performance on the

primary task is required to be constant and capacity as the primary task varies in

difficulty is mapped by performance on the secondary task. As the primary task

demands increasing capacity, secondary task performance is progressively degraded.

The basic prediction of the limited-channel model is an interaction between task

difficulty, and whether the primary task is performed alone or in concert with the

secondary task: The drop in performance is greater for the difficult primary task

than for the relatively easy primary task. This prediction is equally valid when only

dual-task performance is considered, and both primary and secondary tasks have two

levels(i.e., easy and difficult Kantowitz et al. [53], Kantowitz, [52]).

Allport et al. [2] reported that the human operator was better represented by

several independent channels that operated in parallel, rather than by only a single

channel.

Kantowitz et al. [53] examined an intermediate hybrid model (Figure 2.6) that

is less parsimonious than the limited capacity single channel but more parsimonious

that n independent channels. A hybrid model is one that is neither strictly serial

or strictly parallel but contains both kinds of processing in its system architecture.

Figure 2.6 represents a hybrid model to explain systems in time-sharing experiments

[53]. They combined a motor-tapping task with a digit-naming task.

www.manaraa.com

33

r
— Serial Stages —

1

I Parallel Stages 1

I
•>— Stage-1 >-

-> Stage-2 >-

1

Stage-3

_ J

Limited , / Capacity
/ Source

Figure 2.6; The Hybrid Capacity Model [53]

www.manaraa.com

34

Knowledge-Based System Interaction

It simulates human reasoning about a problem domain, rather than simulating

the domain itself. This distinguishes knowledge-based systems from more familiar

programs that involve mathematical modeling. This is not to say that the program

is a faithful psychological model of the knowledge-based, merely that the focus is upon

emulating an knowledge-based problem-solving, that is, performing the relevant tasks

as well as, or better than, the expert.

It performs reasoning over representations of human knowledge, in addition to

doing numerical calculations or data retrieval. The knowledge in the program is

normally expressed in some special purpose language and kept separate from the

code that performs the reasoning. These distinct program modules are referred to as

the knowledge-base and the inference engine, respectively.

It solves problems by heuristic or approximate methods which, unlike algorithmic

solutions, are not guaranteed to succeed. A heuristic is essentially a rule of thumb

which encodes a piece of knowledge about how to solve problems in some domain.

Such methods are approximate in the sense that they do not require perfect data

and the solutions derived by the system may be proposed with varying degrees of

certainty.

Knowledge-based interaction systems required by an adaptive human-

software interface

There are seven adaptive system interfaces in knowledge-based interaction be

tween the human and software system.

(1) Knowledge of the programmer; that is, expertise with the system;

www.manaraa.com

35

(2) Knowledge of the human-software interaction; that is, modalities of interaction

and dialogue management;

(3) Knowledge of the operation/domain; that is, the ultimate purpose of the problem

area and its goals;

(4) Knowledge of the human-software system; that is, the characteristics of the

human-software interaction systems; and

(5) Knowledge of the programmer and program designer: A human operator model,

combining information about the user's knowledge, capabilities, and preferences,

should reflect the content of the operator's knowledge of the human-software sys

tem and the operation domain as well as their individual cognitive strengths and

limitations. Major issues in building the programmer/designer model: (a) determin

ing what information should be incorporated into the programmer/designer model;

(b) determining how this model should be configured. Cognitive psychology issues

play a major role in modeling the programmer because there are individual differences

among software engineers with knowledge and experience. There are three techniques

to construct and modify programmer models: (a) Classifying programmers as novices

and update their status to experts as they demonstrate more proficiency; (b) Compar

ing the programmer's knowledge to a domain expert's knowledge; (c) Characterizing

the programmer by a set of stereotypical traits.

(6) Knowledge of human-software interaction: An adaptive human-software interface

should provide help that is appropriate to the context as well as to the particular

operator. It should be able to track the recent human-software dialogue. This re

quires some knowledge of how interactions are structured and what information may

www.manaraa.com

36

be implicit in them. Natural language^ interfaces are inherently more adaptive in

that they do not require learning any artificial command syntax for communicating

with human-software interface systems. The following criteria for natural language

systems are usable and friendly to novices and experts [60] :

(a) Syntactic coverage;

(b) Task-oriented semantic coverage;

(c) Flexibility in the presence of extra-grammaticality;

(d) Semantic resilience;

(e) User friendliness;

(f) Transportability.

(7) Knowledge of the task/domain; A programmer is trying to accomplish his task.

There may be several levels between the immediate task and the overall programming

task. If a human-software interface system is to be maximally supportive it must be

able to assist the software engineer in achieving programming tasks. The system

must' be able to infer the information from the human-software interaction, (a) Task

modeling: Although many adaptive human-software interface systems use a model of

the programmer to gauge the amount and the type of adaptation, there are several

systems that are not based upon user models. The adaptation is based upon the

human-software system's performance on the task, (b) Task detection and plan

inference: An adaptive human-software interface must know what the user wants to

accomplish. There are two possible conditions under which plan recognition occurs.

First, all possible plans of the programmer are known in the case of limited task

domain. Second, all possible plans are not known in the case of any reasonably

^Natural language refers to the software engineer's native language.

www.manaraa.com

37

complex system [80].

Fuzzy set application to knowledge-based human-software interaction

The common-cause error in human-software interaction can be controlled by the

fuzzy set theory. Classical control theory provides a good design solution to linear

single input, single output system problems. The fuzzy set theory, as a modern control

theory, has also proven to be very useful for solving common-cause problems of linear

multi-variable system that are of a deterministic or stochastic nature using state space

space or frequency response methods in human-software interaction [106]. Common-

cause human domain error normally are regulated by human software designer who

adjusts the control mechanism. The following problems should be overcome to have

an accurate description of the common-cause human domain error control strategy

of an software engineer [54].

(1) The control mechanism of a software designer are often erratic, inconsistent or

subject to error due to the imprecise nature of human information processes, and

hence the programmer's control mechanism is difficult to interpret accurately.

(2) The software engineer frequently responds not only to single measurements, but

to complex patterns of measurements and observations of unmeasurable variables,

such as consistency and complexity, etc. These observations are then categorized

subjectively and used as a basis for control mechanism.

In the approach for fuzzy models of human behavior aspects problem solving.

Rouse [97] studied following three basic approaches, such as, the pattern recognition

approach, the structured approach, and the rule-based approach.

(1) The pattern recognition approach: This approach has been used as a basis for

www.manaraa.com

38

modeling the medical diagnosis process of a physician [34]. In this model for human-

software interaction, the system designer directly transforms a three dimensional

common-cause failure error attributes into membership values for the fuzzy set of

possible solutions. The basic assumption is that the human/design has a repertoire

of stored patterns that is sufficient for producing acceptable solutions to the common

causes that are encountered.

(2) The structured approach: This approach was introduced by Rouse [99] in model

ing human decision making in fault diagnosis tasks using fuzzy set theory. It concerns

the common cause human error solver as using the structure of the common causes

problem to infer membership in the fuzzy set of possible solutions. Thus, given the

symptoms of a problem and network of transition relationship diagram, a fuzzy set

of possible solutions is defined as those problem elements that have a path to all

of the symptoms. The set is fuzzy in which the programmer may not have precise

knowledge of the existence or lack of a path from each element to each symptom.

The fuzzy fault diagnosis model was used to predict the number of actions that were

required before a correct solution could be found. Results from common-cause error

analysis were presented for simulated fault diagnosis tasks involving common-cause

error control mechanism. It is very difficult for programmer to utilize information

about elements which had not failed, and also to model a subject that makes many

mistakes.

(3) Rule-based approach: A fuzzy rule-based model of human problem solving was

development by Rouse et al [100]. This approach involves the use of rules that evoke

actions which lead the software designer towards a human-software interaction solu

tion. The model of Rouse and Hunt was designed to search the problem space in both

www.manaraa.com

39

a symptomatic and topographic mode. The symptomatic search is based on the state

variables in the system, where as the topographic search relies more on the functional

structure of the system. Fundamentally the model attempts to choose an appropri

ate action based on the observed symptoms of the malfunction. If the model fails to

recognize a familiar pattern then action is taken based on the functional topography

of the malfunctioning interaction system.

Software Development System

There are five procedural phases in software development; requirement specifi

cation, software systems design, program coding, software systems validation, and

fault-tolerant software systems. As shown in Figure 2.7, there are several factors to

be considered in each phase.

Figure 2.8 represents three recovery zones for each software development proce

dural phase associated with four occasional common-cause failure domains.

Specifications of requirements and tasks

This first phase of software development defines the requirements and specifica

tions for an acceptable solution to the problem. Requirements analysis focuses on the

interface between the software and the user who needs to operate it. This task for the

software development involves what the program is supposed to do; what real software

project problems it is to solve, the inputs and the outputs of the program, and the

available human, hardware, and operating software resources. These requirements

then need to be translated into a set of explicit specifications for a software project.

Requirement partitioning has been defined as the synthesis or grouping of elements of

www.manaraa.com

40

A. Structured Analysis and Design Technique

B. Soft»are Reqiirenent Engineering Methodology

C. Problem Statenent language/Problem Statenent Analyzer
D. Technology for the Automated Generation of System

A. System Requirenent
0. Complexity Problem
C. Synthesis versus Iteration
D. Fall-Back System Failure

1, Requirement Specification

2, Software System Design

A. Identify the Output
B. Define the Logical Data Structure
C. Define the Physical Database
0. Define the Program Structure
E, Code Program

4, Software System Validation

A. Proofreading A. Sequential or Redundancy
B. Run-Tine lest B. Acceptance Test
C. Sinulotion Test C. Simultaneous and Redundancy

D. Autonomous Distributed System

5, Fault-Tolerant Software System

Figure 2.7; Software Development and System Interactions

www.manaraa.com

41

Recovery Zone III

f
Recovery Zone I

Recovery Zone II

f

Requirement

Specification

systems

Software Design

N Program

Coding

\ Systems

Validation ; Program

Coding
} Systems

Validation

Common-Cause Domain I

Knowledge Deficiency Phase
Common-Cause Domain II

e-
Concurrent Software System . . _ , ,,,
_ -, Common-Cause Domain III
Design Phase

Programming Process Phase

:ommon-Cause Domain IV

)
System Performance

Evaluation Phase

Hunan-Software Interaction Processing Systems

Figure 2.8: Common-Causes and Recovery Zones

www.manaraa.com

42

decomposition according to a well-defined criteria into a logical programming space.

It is more well related to nonfunctional than to functional requirements.

Defining specification requirements gives both the user and the software engi

neer a concrete description of the system. Included are the desired operating charac

teristics of executive program, execution speed, portability, modifiability, size, etc..

Allocation of specifications is the activity of mapping the logical programming space

onto physical software resources. Specifications enable test data to be developed

early where the performance of the human-software system can be tested objectively

because the test data will not be influenced by the implementation.

There are four automatic analysis techniques of specification requirements for

software development:

(1) SADT®: SADT is a structural analysis and design technique used as a tool for sys

tem definition, software requirements analysis, and system/software design. It con

sists of procedures that allow the analyst to decompose software function; a graphical

notation, the SADT actigram and datagram, that communicates the relationships of

information to function within software; and project control guidelines for applying

the methodology [101].

(2) S REM : S REM is an automated requirements analysis tool that makes use of a

Requirements Statement Language(RSL) to describe "elements, attributes, relation

ships and structures." These RSL primitives are combined with narrative information

to form the detail of a requirements specification [1].

(3) PSL/PSA^: This technique provides an analyst with capabilities that include:

®SADT:Structured Analysis and Design Technique
^SREM:Software Requirement Engineering Methodology
^PSL/PSA: Problem Statement Language/Problem Statement Analyzer

www.manaraa.com

43

(a) description of information systems regardless of application area; (b) creation of

a data base containing description for the information system; (c) addition, deletion,

and modification of descriptors; and (d) production of formatted documentation and

a variety of reports on the specification [111].

(4) TAGS^: This is composed of three key components: (a) a specification language

called Input/Output Requirements Language(IORL); (b) a set of software tools for

requirements analysis and lORL processing; and (c) an underlying TAGS method

ology. Unlike S REM and PSL/PSA, the TAGS specification language was designed

to accommodate both graphical and textual representations created by the analyst

using an interactive tool [105].

Software development system design

The main goal of program design is to produce a cost effective design which

satisfies its intended use. It may be assumed that this goal is to produce a design

with low residual error content. In certain high-reliability applications this is not

sufficient, and various techniques for self-checking and limiting the effect of an error

are needed. Design is a very human-directed and highly interactive process in which

the analyst uses a mixture of knowledge and intuition to generate initial approaches

or configurations. There are four modifying descriptions in software development

system design;

(1) Seven factors for system development can be considered in software design:

(a) Safety

(b) Reliability

^TAGS: Technology for the Automated Generation of System

www.manaraa.com

44

(c) Fault Tolerance

(d) Safe shutdown and rapid recovery

(e) Maintainability

(f) Testability

(g) Extendability

(2) There are some important software quality measures needed to codify and reduce

by analysis, experiment, or quantitative estimates in a software project. They are:

the complexity or the problem, the required algorithm, the processing time, and the

data-representation and memory requirements. Estimates of complexity are very

useful to the programmer in the early design stage. Since some models focus on the

testability of software, these may last to be useful in the design phase.

(3) Synthesis versus iteration: In synthesis, a clear-cut and straightforward algorithm

can be used to evolve a design which exactly meets the requirement specifications.

On the other hand, the iterative design process can be begun by assuming that an

analysis technique exists. Then, one can propose intuitively some hypothetical design

and subject it to analysis. A true synthesis procedure is a one-shot, open-loop design.

However, because one must always be on guard for human error, the design is checked.

An iterative design is generally checked several times.

(4) Fall-back from software failure; The principle of software fall-back is to bypass the

malfunctioning task when a problem is detected[43]. This allows continuous operation

of remaining tasks without shutting down the entire system. Problem errors occur

more often in less important tasks than in those of major importance. When the less

important program is bypassed, there is little effect on overall system performance

because only some of the functions are lost. There are some considerations for fall

www.manaraa.com

45

back from failure:

Manual control and changeover processing

Changeover from Semiautomatic Control

Changeover from manual control

Program coding

Software development actually consists of two complementary but quite different

processes: the selection and design of algorithms, and the coding of those algorithms

into computer languages.

Coding is the process of translating an algorithm into a form mutually under

stood by people and computers. However, while nearly all software engineers are

also skilled at coding, all coders are not skilled in design. Algorithmic design and

selection is a creative process far more akin to creative writing than to indexing, and

just as most persons can be taught to index or code, only a few prove to have real

talent at creative writing or software development. The following steps are provided

for programming coding:

Step (1) Identify the output

Step (2) Define the logical data structure

Step (3) Define the physical database

Step (4) Design the program structure

Step (5) Coding.

www.manaraa.com

46

System validation of human-software interaction

A software engineering mistake is often made when implementing a verification

and validation task that simply duplicates the testing program. Validation should be

planned and initiated at the outset of the development program. Even though the

actual program testing activity cannot be initiated until end item products become

available, the testing of requirements and specifications and the design of software test

cases and test tools should proceed concurrently with early phases of the development

program.

A fiowgraph analyzer is capable of detecting references to variables which are

never initialized or never reused after receiving a value; these usually indicate errors.

Other methods such as Proofreading, Run-time test, Simulation test can be applied

to validating the program. Conway [24] described eight different meanings for a

correct program in this phase:

(1) A program contains no syntactic error.

(2) A program contains no compilation errors or failures during program execution.

(3) There exist test data for which the program gives correct answers.

(4) For typical sets of test data, the program gives correct answers.

(5) For difficult sets of test data, the program gives correct answers.

(6) For all possible sets of data which are valid with respect to the problem

specification, the program gives correct answers.

(7) For all possible sets of valid test data and all likely conditions of erroneous

input, the program gives correct answers.

(8) For all possible input, the program gives correct answers.

www.manaraa.com

47

Fault-tolerant human-software interaction system

There are two cases for a fault-tolerant system in human-software interaction.

One is a failure in a fault-tolerant system which includes design features countered the

effects of system faults. It is called system fault-tolerant in accordance with the faults

they countered. In interpreting a failure for a fault-tolerant system, one can consider

variations from requirements of external and not internal behavior. Therefore, an

internal component failure may be counteracted by fault-tolerant features of the

system. In other cases, a malfunction of a fault-tolerant feature that affects the

program output will represent a system failure.

Systems with their components can be regarded as performing operations in

order to provide responses to requests. B. Randell [89] discussed the idealized fault-

tolerant component with three categorical groups of existing faults within a system

from the viewpoint of a given component:

(1) faults within the component itself,

(2) faults in the sub-components or co-existing components that a component makes

use of, and

(3) faulty requests made of the component by its environment, i.e. the enclosing

component or the co-existing components with which it is interacting.

Randell's concentration is on three forms of structuring [89]:

(1) idealized fault-tolerant components: provide a means of system structuring which

makes it easy to identify those parts of a system that have specific responsibilities

for coping with given faults,

(2) recursive structuring scheme: involves using complete systems as the basic ideal

ized fault-tolerant components of a distributed component system whose functionality

www.manaraa.com

48

matches that of its component systems,

(3) atomic action: provides a means of structuring both forward and backward

recovery in distributed systems.

www.manaraa.com

49

CHAPTER 3. COMMON CAUSE ERROR AND THE HUMAN

RELIABILITY FUNCTION

The human reliability function is concerned with human error, common-cause

failure, and common-cause effect in human-software interaction [6] [28] [65]. Hu

man stress, human error estimates and human error rate prediction techniques are

discussed in this chapter.

Human Error and Reliability in Human-Software Interaction

Human error can be defined as consisting of "any significant deviation from a

previously established, required or expected standard of human performance, that

results in unwanted or undesirable time delay, difficulty, problem, trouble, incident,

malfunction, or failure [84]." In real world situations where discussions of precisely

what is or is not a common-cause human error are of less importance than what can

be done to prevent them, the operational definition may be restricted to those errors

which: (1) occur within a particular set of activities, (2) are of some significance or

criticality to the primary task under consideration, (3) involve a human action of

commission or omission, and (4) could have been prevented through some feasible

course of action [28].

A failure effect can be explained as the consequences a failure mode has on the

www.manaraa.com

50

operations, tasks, function or status of a system. Failure effects are classified as being

of local effect, next higher level effect and end effect [4].

Generally speaking, sources of common-cause human error in software devel

opment tasks arise from several different factors, such as (1) human psychological

and physiological stresses, (2) missing, incomplete, or erroneous knowledge, (3) inert

knowledge (i.e. situation-relevant knowledge is not accessed under the conditions

in which the task is performed). Stress with human error at a moderate level (see

Figure 3.1) in some physiological and psychological situations is useful in increasing

human effectiveness to its optimal level [28]. Obviously an over-stressed person will

have a higher probability of making an error. In certain circumstances, there may

be undesirable psychological or physiological tensions from work activities or envi

ronmental conditions that are beyond the reasonable or acceptable limits. In such

cases stress and strain arise. Stress refers to some undesirable condition, circum

stance, task, or other factor that impinges upon the individual, and strain refers to

the effects of the stress. However, all common-cause human errors are not from these

phenomena. There are many other of causal factors affecting software-task failure in

human-software interaction.

Stress characteristics and stress check list factors in human-software in

teraction

There are at least eleven identified stress characteristics of a programmer in

human-software interaction systems [71]. These are associated with the following

situations:

(1) Information feedback to the programmer is inadequate for the determination of

www.manaraa.com

51

The level of s t ress enough to keep
the hunanbeing a ler t

/N

Region I Region 11

CL LOW

Low Moderate Extremely High
(Opt imal) _ STRESS LEVEL -

Figure 3.1: Performance Effectiveness as a Function of Stress LeveL

www.manaraa.com

52

correctness of his or her actions.

(2) The programmer is required to make comparisons of two or more displays quickly.

(3) Lack of knowledge or background for problem solving, understanding, and design

causes pressure for lower level programmer.

(4) There is a requirement for prolonged design work by the software engineer.

(5) To perform a task, the sequence of steps needed is very long.

(6) More than one display are cumbersome to discriminate.

(7) There is a requirement to program in a manner more user friendly oriented than

programmer oriented.

(8) Very competitive and high level intelligent design is requested for multi-version

redundant software development.

(9) There is a requirement that decisions have to made on the basis of data collected

from various sources.

(10) Other factors, such as short term memory [107], information overload,

interference, multi-task overload, perceptual overload are present.

(11) Other demands are present that require or produce : vigilance, signal detection,

information overload, uncertainty, lack of feedback, or time pressure.

Another list of stress inducing general environmental situations contains the

following [8]:

(1) Having to work with programmers who have unpredictable temperaments;

(2) Being unhappy with the present job or program;

(3) Gaps in knowledge or familiarity with computer language, operating system,

and hardware;

(4) Possibility of redundancy at work;

www.manaraa.com

53

(5) Poor chances for promotion at work;

(6) Lacking the expertise to perform the required job;

(7) Poor health or physical;

(8) Performing under extremely tight time pressures;

(9) Having to take work home most of the time in order to meet deadlines;

(10) Excessive demands from superiors at work;

(11) Having to write a program below one's ability and experience.

Rook's model of human error occurrence

Rook [96] developed a mathematical model of error occurrence. This model can

be used to compute the total probability of no functional failures over Z independent

types of tasks. It requires the following assumptions:

(1) A number of different tasks involve a miss-function.

(2) In achieving the mission function, each task may be carried out more than once.

In addition, one or more error modes may be associated with a task.

(3) The error modes are independent.

(4) The entire mission function may or may not fail totally due to an error.

The occurrence probability of a functional failure resulting from the &th error

mode of the ith operational task is given as

% = • Qki

where

the probability that the ith task arises in an error of the kth. mode

Qfif the conditional probability that if the mode k error of the ith operational type

occurs it will result in total function failure.

www.manaraa.com

54

Human error estimates and reliability function

The basic unit of human reliability can be defined as the Human Error Prob-

ability(HEP), which is the probability of on error happening during some specified

human task. HEP is defined as the number of errors of a specified type divided by

the total number of chances for that error to occur [51].

Human error probability estimates can be provided per time rate and per demand

rate, as follows [39]:

" . - ê
where

Pf^^: the probability that when a specified task is carried out a human error will

occur

En- the total number of known errors of a given type

Opg : the total number of opportunities for the error.

A generalized human performance reliability function[5], [94], [95] is described

with a time dependent human error(hazard) rate, He{t) as;

where

human performance reliability at time t

The human performance correctability function for continuous tasks is concerned

with the human capability to correct self-generated human errors[94]. That function

is defined by the probability that an error will be corrected in time t subject to a

www.manaraa.com

55

stress constraint associated with the task and its environment:

PQ{T)= 1 - e" rc(()

where

rc{t): the time dependent rate at which tasks are corrected, or

P c { t) = f m

where

f(t); the probability distribution function associated with the time-to-correction com

pletion.

Technique for Human Error Rate Prediction (THERP)

This methodology which was first established by Swain at Sandia Laboratories

[110] has been developed to a level where it is regarded as the most powerful and

systeirnatic methodology for the quantification of human reliability. The basic tool

used in THERP is the probability tree diagram (Figure 3.2^). Human error

that may be defined as deviations from assigned tasks often appears as basic events

in fault trees. A THERP analysis initializes by decomposing human tasks into a

sequence of unit activities. Possible deviations are postulated for each unit activity.

A Human Reliability Analysis (HRA) event tree is then used to visualize the normal

sequence of unit activities together with the deviations. The event tree thus becomes

a collection of chronologically associated human tasks. Each sub-branch of event tree

represents either normal execution of a unit activity or an omission or a commission

^The probability of selecting the correct ignition command is t.

www.manaraa.com

56

t y \ T

\±(Slt) \^T(SIT)

FAILURE FAILURE

SUCCESS FAILURE

Pr(S) Pr(F)

Figure 3.2: Probability Tree Diagram for a Programming Task.

www.manaraa.com

57

error related to the activity. Human error appearing as a basic event in a fault tree

can be defined by a subset of terminal nodes of the event tree.

The occurrence probability of the basic overall event is calculated after prob

abilities are assigned to the branches of the event tree. Probability estimates on

the branches must reflect performance shaping factors specific to human operating

systems, and other boundary conditions. Events described by branches can be statis

tically dependent. The probability of a correct outcome C, completing a programming

task, is the product of the two probabilities in the tree [43]:

P r { C) = t { s \ t) .

The probability of failure can be calculated as

P r { F) = t { S \ t) + T { s \ T) + T { S \ T)

Where

t : the probability of successfully locating the correct command

T: the probability of selecting the wrong command

s I t : the probability of a successful one-trial run given that the proper command

was selected

5 1 T: the probability that the software fails to run again given that you have the

proper command was selected.

The outputs of the THERP model are estimates of correct or failure probabilities

for human behaviors and tasks.

www.manaraa.com

58

Human-software systems reliability

Here, human-software reliability can be defined as the probability of accom

plishing a task successfully by humans at any required stage in a human-software

interaction within a specified minimum time limit.

Software task reliability prediction procedure: The main objective of

the procedure of software task reliability prediction is to obtain subtask reliability

estimates for which no previous reliability data is available [30]. To obtain a total

task estimate, subtask estimates may be combined. The following six steps are from

this method:

(1) Object Orientation: The tasks are to be performed when a complete operation is

represented by each task. A task is composed of a series of subtasks.

(2) Subtask identification; Once the tasks to be performed are identified then the

next logical step is to identify the subtasks of each task.

(3) Concurrent Design: Simultaneous design is provided for the software product and

development process in human-software interaction and the system task of software

development.

(4) Obtaining empirical data: This type of subtask data may be available from a

number of sources such as in-house operation, experimental literature, laboratory,

and so on.

(5) Estimating task performance: This is considered along with rating each subtask

in accordance with its potential for error or level of difficulty. A scale from 1 to 10

points corresponding from least error to most error can be used to rate a subtask.

This kind of rating is purely based on individual judgement.

(6) Analyzing the task performance error rate: To get a subtask reliability estimate.

www.manaraa.com

59

the empirical data is expressed and the judged in comparison with a straight line.

The line is tested for the goodness of fit. This line can be used to estimate subtask

reliability.

(7) Determining each task reliability: The total task reliability is given by the product

of subtask reliabilities taken from the equation of the straight line.

Common Cause Failures in Human-Software Interactions

Common-cause failures, which were overlooked 20 years ago, have been receiving

wide attention especially in the software systems area. This is because the assumption

of statistically-independent failures of redundant systems is easily violated in the case

of human-software interaction. Common-cause failures concern the possibility that

system or mission failure involving multi system component failure may occur due

to a common cause , i.e. the loss during some critical period of multiple, redundant

systems, component functions, due to an underlying common control mechanism,

fault or phenomena.

A related study for common-cause failure initially, a small research group on Rare

Event was to investigate and organize the program of work based on the findings of

the task force in the following areas:

- rare event data collection and analysis;

- common mode failure analysis;

- human error analysis and quantification;

- statistics and decision theories applicable to rare events;

- inter disciplinary communication and tutorial programs on rare events programs

and their solution.

www.manaraa.com

60

I. A. Watson described that the analysis of common-cause may be complicated

because of various considerations including [116]:

(1) recognition of many possible causes of common-cause failure and their identifica

tion;

(2) selection of models to be used in the quantification of system reliability;

(3) the availability of historical data;

(4) the comparative rarity of common-cause failure.

There is a different situation in a human-software system compared with a hard

ware system. A failure in one transaction processor(TP) software component would

also occur in another since they are identical [76]. Both copies contain identical faults.

Since the software components are not independent of each other in regard to fail

ure behavior, software redundancy does not improve reliability. This is a commonly

occurring and very important point for software components. A common-cause fail

ure in the software development processing system is any instance where multiple

components malfunction due to a single cause.

At first, in modeling common cause failures in software development, it is desir

able to introduce the initiating events physically. An initiating occurrence is to be

regarded as an external event such as a flood, earthquake, power outage, or fire which

can cause the failure of several components simultaneously, due to the environmental

stresses occasioned by its occurrence.

Also simultaneously, another common cause failure of several components occurs

when one component has several functions, so that its failure prevents each of these

individual functions.

Another possible common cause is the existence of standby components which

www.manaraa.com

61

are called into use when specified components have failed. The conditional waiting

time until a failure in the standby component is observed is different from the waiting

time until failure if it were in non-standby usage.

The following are some causes of common-cause failures in general systems [30]:

(1) External abnormal environments: dust/dirt, temperature, humidity/moisture,

vibrations.

(2) Equipment failure resulting from some unforseen external event: fires, floods,

earthquakes, tornadoes.

(3) Design deficiencies: During the design phase of the system some faults may have

been overlooked. For example, the interdependence between electrical and mechani

cal items of a redundant system may have been overlooked during the design phase

of a system.

(4) Operation and maintenance errors: Occurrence of these errors may be due to im

proper maintenance, carelessness, improper calibration, the same person performing

maintenance on all redundant units repeating the same mistake on all of them, etc.

(5) Multiple items purchased from the same manufacturer: All these items may have

same manufacturing defects.

(6) Common external power source to redundant units.

(7) Functional deficiency: misunderstanding of process variable behavior, inadequacy

of designed protective action, inappropriate instrumentation, etc.

Common-cause failure analysis of redundant systems

There is a method for incorporating common-cause failure in a redundant net

work analysis of the human-software processing system [30]. There is an assumption

www.manaraa.com

62

that network units are identical and independent, and also that the same portion of

common-cause failures is associated with other redundant network components.

It is assumed in the common-cause failure model that

7 = fraction of component or system failures that are common-cause

Au = A^ -1- Ac

where

Au: the component constant failure rate

Xf the component independent constant failure rate

Ac: the component or system constant common-cause failure rate

Since

Ac
7 = T"

A U

then

Ac = 7Au

By arranging these equations, we get

A^ = (1-7)AU

Parallel Component Network Systems: A series-parallel component net

work system model in multi-version software is illustrated in Figure 3.3. This is

actually a modified parallel network system to incorporate common-cause failures.

The parallel portion of the network represents n independent failure components

and the single component in series is a hypothetical component representing system

common-cause failures [76]. The failure of the hypothetical common-cause failure

component will cause system failure.

www.manaraa.com

63

HWl SWl

Connon-Cause Effect

HV2 swa

Event Diagram for Connon-Cause Failure Model

20

RsQ.BS ^ 15

R=0.90

R=0.95

L=0.98

0.2 0.4 .06 0.8 1.0
Fraction of Cannon-Cause Failure c

Effect of Connoh-Cckuse Failures on Reliabil ity

Figure 3.3: Event Diagram for Common-Cause Failure Model and Effect of Com
mon-Cause Failures on Reliability in Human-Software Interaction [76]

www.manaraa.com

64

The human-software reliability, Rfig, of the human-software processing network

given in Figure 3.3 is

R h s ̂ [I - { I - R i r] R c

where

Rf. the independent failure mode reliability of a component

Re', the common-cause failure mode system reliability

n: the number of identical components

The time dependent reliability of the ith independent component with constant

failure rate is

Riit) = e-^i'

Similarly, the hypothetical common-cause failure component reliability is

R c =

By substituting variables in all of these equations

Rhs{t) = [1 - (1 -

To calculate the mean time to failure(MTTF), R}ig{t) is integrated over the time

interval [0, oo]

The common-cause principle and statistical dependence are described in Appendix

A.

www.manaraa.com

65

CHAPTER 4. A COMMON CAUSE MODEL AND

EXPERIMENTAL DESIGN IN HUMAN-SOFTWARE INTERACTION

Common-Cause Model and Function

Common-cause model

The common-cause model can be used to define internal common-cause human-

based error and to develop a comrhon-cause error control mechanism for human-

software interaction. It can be explained in terms of four schematic and systematic

design stages, as illustrated in Figure 4.1. The stages are as follows:

(1) Human-software interaction components: These system components are the basic

elements and factors in human-software interaction. They are: the human working

as a software engineer, software as a operating system, and hardware as a system

work station. The common-cause error occurs in system interactions involving fail

ures among these system components.

(2) Common-cause error protocol: Common-cause error protocol is the actual loca

tion and identification of common-cause error attributed to a common-cause eifect in

a redundant system of multi-version software development. It is distinguished within

a given common-cause error mode by its individual identification, by a pattern recog

nition, and by a behavior domain.

www.manaraa.com

66

(3) Common-cause error function: This is the function of common-cause error re

vealed in the existence and the performance allocation of each common-cause error

mode using an evaluation typically by three variables such as frequency or error oc

currence, error correction time, and point of error occurrence in time.

(4) Common-cause analysis, representation, and system redesign: This stage con

sists of the analysis and representation of common-cause error in human-software

interaction. Several analytical methods have been provided to define common-cause

human domain error, and to redesign the system interaction with representational

results and prevention schemes involved with system development productivity, and

common-cause error control mechanisms.

Common-cause function

The common-cause function is shown in the existence and in performance allo

cation of common-cause failure with its identification(/^), pattern recognition(Py),

and bëhavior domain(B^) of common-cause error mode. Each allocated common-

cause error mode is evaluated by performance variables using common-cause er

ror frequencyj j^), error correction time(Cj- j f.), point of error occurrence in

time(0^ J during the software development period. These are illustrated by

Figure 4.2. The common-cause function, Cy is:

subject to

= 1,0 < /^ < 1

^ P j = 1 , 0 < P j < I

www.manaraa.com

67

PHASE |: PHASE ID PHASE HI: PHASE IVi

HUHAN-SOFTVARE

INTERACTION

COMPONENTS

PROGRAM

ERROR

LOCATION

COMMON-CAUSE

FUNCTION

FACTORS

COMMON-CAUSE ANALYSIS

REPRESENTATION

SYSTEM REDESIGN

WARE,

\l/

BEHAVIOR

DOMAIN

RECOGNITION

PATTERN

IDENTIFICATION

COMMON-CAUSE

PREVENTION

METHODS

COMMON-CAUSE

ERROR CONTROL

MECHANISM

ANALYSIS OF

RELIABILITY

SOFTWARE TASK

HUMAN-SOFTWARE INFORMATION PROCESSING

KNOWLEDGE-BASED ENGINEERING

CONCURRENT & INTELLIGENT DESIGN

Figure 4.1 : Schematic Design Stages of the Common-Cause Model

www.manaraa.com

68

11 : Connon-Cause Ident i f ica t ion

Error Mode

Pj : Pa t tern Recogni t ion of

Connon-Cause Error Mode

Bk : Behavior Donain of

Connon-Cause Error Mode

Figure 4.2: Three Common-Cause Error Modes and Evaluation Variables

www.manaraa.com

69

=

Ef^2 = , 0 < F ; < 1

E^i = , 0 < F j < 1

E^t = , 0 < f & < 1

Eq =

, 0 < C ^ < 1

Ec& =

EOz = , 0 < (% < 1

EO; =

V
I c
T

 V
I o

EOt = , 0 < 0 f c < l

where

If programming identification error mode

Pj i reasoning pattern error mode

Bj^: behavior domain error modes

Fj- j f,: Common-cause error frequency in each mode

Q j Common-cause error correction time in each mode

Oi j^y. Common-cause error occurrence time zone in each mode.

The common-cause function consists of these three reasoning factors of common-

cause error mode, identification, pattern recognition, and behavior domain of common-

cause error mode. Certain common-cause errors have these three different axes of

reasoning modes, with which can be evaluated by the three subjects' performance

variables, frequency, correction time, and point of occurrence in time, using the ap

propriate portion of the total amount of collected data relating to all errors.

www.manaraa.com

70

Consideration factors and environmental conditions of human-software in

teractions

There are some modifying factors and environmental conditions for the three

components in human-software interaction.

• The human side of the interaction factors including:

Human availability: manning and working load levels

Human capability: skill and knowledge levels

Human performance: completion of required tasks

Human productivity: quantity and quality produced per unit time

Human safety, biomechanics, work physiology

• The software side of the interaction factors including:

Specification of Requirements:

Design: software product design, process design

User-friendliness: human oriented, easy use, objective orientation

Interface with hardware: hardware capacity with software size

Software productivity: efficiency, utilization, cost, interactions

• The hardware side of the interaction factors including:

Information displays: the display format, display device adaptation to human

1 cmergonomics

Display characteristics: symbol size, shape, color, density, etc.

Data organization and output: the architecture producing hierarchical levels

1 cmof data specificity

Communications: command mode types, error messages, prompts, alerts,

1 cm queries, etc.

www.manaraa.com

71

Load procedures: task sequences, decision making and its principles

Data processing: data entry, manipulation, designation, data flow

System documentation: hard copy manuals and aids

Common-Cause Error Protocol and Common-Cause Factors

There are three features of internal common-causes, previously introduced, that

can be used in determining the identification of programming error modes, pat

tern recognition, and behavioral error categories of common-cause errors in human-

software interaction. They are: identification of common-cause error protocol(/j),

reasoning pattern error modes(Pj), and behavior domain error modes(Bj^).

Identification of common-cause error protocol

There are eight identification modes(:/^) categories of typical human-based pro

gramming error from common-cause error protocols, which are used in the determi

nation of the common-cause error that caused the failure. Each error protocol mode

means the actual location of common-cause error and contributes to the common-

cause effect at each stage of human-software interaction for multi-version redundant

software development system [112].

System design and requirement errors:

Design not-responsive to requirements

Problem definition error

Requirement specification and task complexity error

Design specification, inappropriate methodology

www.manaraa.com

72

/g Variable setting and program handling errors:

File not rewound before reading

Data not initialization not done

Program initialization, and dimensional declaration

Variable setting and indexing error

Variable referred to by the wrong name

Incorrect variable type

Subscripting error

/g Program input and data base error:

Invalid input read from correct file

Input read from incorrect file or subroutine

Incorrect input format, statement referenced

Data base problem, and data manipulation error

Data sorted incorrectly

End of file encountered prematurely

1^ Computation based errors:

Incorrect operand in equation

Incorrect use of parenthesis

Sign convention error

Units or data conversion error

Computation produces an over/under flow

Incorrect/inaccurate equation used

Precision loss due to mixed mode

Missing computation

www.manaraa.com

73

Rounding or truncation error

/g Program logic errors:

Incorrect operand in logical expression

Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements in loop

Loop iterated incorrect number of times (including endless loop)

Duplicate logic

IQ Human-software system interface errors:

Wrong subroutine called or nonexistent subroutine call

Call to subroutine put in wrong place

Subroutine arguments not consistent in type, units, order, etc.

Software/data base interface error

Software user interface error

Software/software interface error

System configuration error

Software not compatible with project standards

Ij System operation errors:

Operating system error

Operating command error

Interactions problems with hardware system

Test execution error

Compilation error

www.manaraa.com

74

Operating-user misunderstanding error

Configuration control error

/g Output and output formatting errors:

Data written in wrong file and allocation error

Data base according to the wrong format statement

Data written in wrong format

Data written with wrong carriage control

Incomplete or missing output

Output field size too small

Line count, spacing, or page eject problem

Output garbled or misleading

Pattern recognition error modes

Common-cause reasoning patterns(:Pj) can be recognized with causal character

istics which implicate the identical elements of reason, perception, control mechanism,

occurrence processing, stimulus response requirement, etc. Each identical property

or reason matches a pattern recognition for the common-cause human error mode

[121] [33].

Pi Knowledge deficiency: There is a lack of knowledge based on the hardware sys

tem, operating system, human-software interface, field of specific requirements or

problem solving methodology.

^2 Design deficiency: During the design phase of the human-software interaction

system, some common-cause errors have been overlooked. These are in preliminary

www.manaraa.com

75

and detailed design work, the design reviews, definition of variables and attributes,

and all work done prior to coding. For example, the interdependence between system

requirements and output results, or between logical units and data flow of program

ming have been overlooked during the design phase of a system.

Operation and maintenance errors: Occurrence of these common-cause errors may

be due to improper maintenance, carelessness, or improper calibration. The same

program performing maintenance on all redundant units of human-software system

may repeat the same mistake on all of them.

P4 Functional deficiency: This includes misunderstanding of process variable behav

ior or specific requirements, inadequacy of designed protective action, inappropriate

use of methods or instrumentation, or inadequacy of component processing in human-

software interactions.

P5 Syntax error: These result from expressions which are incorrect in the language

being used regardless of the context in which they appear (example:) (<— ()

). Détection of these errors may be allowed through a relatively superficial analysis

using grammatical rules of programming language. The programmer may detect and

correct such errors as a matter of course during the programming process.

Pg Semantic error: These occur when syntactically correct components of a program

imply conditions which are untrue or impossible in stated combinations (example:

UNIT=DISK,UNIT=PUNCH: from IBM JCL DD statement). This statement is

syntactically correct, but it is impossible to allocate two different physical units to

a single logical unit. These kinds of errors may require extensive analysis covering

various interacting aspects and components of a program.

Pj Logical error: These produce incorrect results but otherwise cause no obvious

www.manaraa.com

76

malfunction of the program (example: 1.0 / X + 1.0 is not equal to 1.0 / (X +

1.0)). There is probably little which can be done in terms of redesigning compilers

to aid the programmer in eliminating such errors. These errors show a lack of fit of

the program to the calculation logic. Also, the program may exactly solve a different

problem from the one intended.

Pg Clerical error: These may appear to be either syntactic or semantic errors. They

are only partly a function of the language used. They result from mispunched, mis

placed, or mis-copied cards, misread program drafts, card shuffling, or incorrect tape

mounting.

PQ System complexity: In human-software interaction systems, especially with a

large-scale programming project, special difficulties arise from system components,

comparing and contrasting the given requirement, the type and size of computer

used, selection of proper programming language, memory size and speed required,

processing time, decomposing the problem into subproblem, functions, models, and

analysis. This system complexity appears to be judgmental or managerial in nature

and cannot be easily defined with a lack of relation to the specific tasks of the soft

ware engineer.

Programming behavior domain error modes

There is a common-cause error category in terms of the programmer's behavioral

aspects or point of view (Figure 4.3). Such common-cause error factors may be

representative of from the human information processing, knowledge based design,

error control mechanism, and human behavioral science [90] [92].

www.manaraa.com

77

Model-Based Behavior Domain

Knowledge-Based
Behavior Domain

task Identification Integration

Optimization

Object Orientation

Concurrent Design Domain Principle

/ s

Rule-Based Behavior Domain

Pattern

Recognit ion

Task Rules Representation

Association Storages

Skill-Based Behav or Domain

Automated Sensory-Motor
Reaction Systems Perception 6. Sensing

Data Input 8. Work Load Tine —Space
Information

Reaction Task

Model-Based Conceptual Frameworks

Figure 4.3: Programming Behavior Error Domain Mode

B\ Skill-based behavior domain

Bi A Perception and sensing

Q Automated sensory-motor reaction systems

The skill-based behavior domain is a sensory-motor pattern, controlled and auto

mated behavior, controlled by the structure of the adaptive patterns stored in the

human nervous system. It means that this human error behavior is controlled by

psychological laws and physiological mechanisms governing the human software pro

www.manaraa.com

78

cessing structure and the concept of human behavioral perception and cognition.

Some characteristics of this skill-based behavior mode are as follows:

(1) Sensory-motor variability

(2) Recency and frequency

(3) Topographic misorientation

(4) Environmental control signal

(5) Stereotype mismatching

(6) Shared schema features

(7) Adaptation and fine tuning

B2 Rule-based behavior domain

B2 Pattern matching and recognition

B2 Q Representation and association

B2 (J Working memory and rule interpreter

The rule-based behavior scheme is a human-software interaction that represents hu

man reasoning with grammatical language structure and logical allocation rules. The

rule-based systems represent the solution to a problem as a set of rules that specify

"how some string of symbols may be transformed into other strings of symbols,"

such as a simple form of pattern matching. The transformation of one pattern to

another in a rule-based language is understood to represent an IF-THEN implication.

Rules can express associations between state and task. Some characteristics of this

rule-based behavior mode are as follows:

(1) Habit robustness

(2) Typical fixation

(3) Availability

www.manaraa.com

79

(4) Omission of an isolated function

(5) Over-simplification

(6) Alternative mistake

(7) Over-confidence

(8) Stereotype recognition

(9) Matching bias

Bg Knowledge-based behavior domain

Bg ^ Task identification and domain principle

Bg g Object orientation and concurrent design

Bg (J Integration and optimization

The knowledge-based behavior scheme is a human behavioral phase interacting with •

software development concerned with the design and implementation of programs

which are capable of emulating human cognitive skills such as problem solving, task

identification with domain principle, object orientation relative to the goal, con

current design of software product and human-software interaction processing, and

optimal system integration. The structure of the behavior is an evaluation of the

situation, designing of a proper sequence of actions to achieve the goal. It depends

upon fundamental knowledge of the processes, functions and anatomical structure

of the system. Some characteristics of this knowledge-based behavior mode are as

follows;

(1) Human variability

(2) Selectivity

(3) Adaptation

(4) Working memory limitation

www.manaraa.com

80

(5) Errors in a causal structure

(6) Availability

(7) Matching bias revisited

(8) Need for human decision making

(9) Memory cueing/reasoning by analogy

(10) Incorrect and incomplete knowledge.

^4 Model-based behavior domain:

A highly reliable human-software interaction model yields cognitive design base strate

gies to define models for adaptive interface. Communication strategies for basic sys

tem design, information processing, knowledge of components, and systems configu

ration of interface, must be represented explicitly. The following are some adaptive

concepts of model bcise strategies and design: symbolic and quantitative model, per

formance and cognitive model, static and dynamic model, syntactic and semantic

model, state-transition model, singular and multiple model, etc.

Experimental Design and Procedure

General description of experiment

This project involves an experiment in the cognitive aspects of software project

design. Its purpose is to analyze common-causes of software development related

human error and to identify software design factors contributing to common types

of error occurring in human-software interaction. The results and analytical proce

dures developed during this study can be applied to improving reliability of software

development and to providing guidelines for design of software development.

The main experiment was conducted with ten experts in programming (5 sub

www.manaraa.com

81

jects for FORTRAN and 5 subjects for C) who were paid $6 per hour and were each

given a programming assignment for determining the optimum sequence of machine

replacement or an optimal inventory system. Three prior pilot experiments were con

ducted previously using 33 undergraduate students and 13 graduate students paid

$6 per hour. These experiments conducted to data using beginners (level 1: 20 sub

jects), two year experienced subjects (level 2: 13 subjects), and 5-8 year experienced

programming experts (level 3; 13 subjects) were based on the use of LOTUS-123,

FORTRAN, or C in a programming application in shop scheduling and inventory

control, given initial cost and demand data. The reader is referred to Appendix B

for these programming requirements.

All materials, such as subject selection, requirement specifications, experimen

tal procedures, data collection sheets, and analytical materials for the experiment

were prepared and subject life data were gathered. For reliable subject calibration,

subjects were trained using the actual requirements and overall experimental proce

dures rn an initial session and consultation session. Their skill levels were evaluated

according to programming experience and knowledge background for requirement

specifications. All personal data were kept confidential. After three pilot experi

ments, the main experiment was conducted with data collection according to fre

quency of common-cause error occurrence, error correction time, and point of error

occurrence in time for each of the categorical factors: identification of common-cause

error mode, pattern recognition of common-cause error reasons, and behavior domain

of common-cause error mode as explained earlier in this chapter.

As the programming subject set up and programmed according to the task re

quirements using FORTRAN or C, his/her programming task was observed by the

www.manaraa.com

82

supervisor who pre-classified and designed the common-cause function and common-

cause error factor modes. During the experiment, the contents of common-cause

human error in subject programming failure were, first, recorded with an explana

tion of the reasons for those failures, correction time, and point of error occurrence

in time. Then, at the representational interview session held every 30-45 minutes,

the common-cause error protocol was allocated to each of the common-cause factors,

identification, pattern recognition, and behavior domains, by directed definition and

cooperative decision with the supervisor and the subject. Experimental data was

then validated and analyzed by statistical methods and a geometrical method using

vector analysis and mapping designed for use in analyzing common-cause errors in

human-software reliability and interactions. Figure 4.4 shows the experimental

procedure and design used in this experiment involving human-software interaction

processing. Results were derived using the following analytical methods: common-

cause error mode data and table, mapping and geometric vector evaluation in hex

ahedron contours, value of common-cause function with simulated rating, historical

common-cause error recovery time zone, transition relationship diagram, grouping of

major common-cause factors, and correlation and regression analysis of categorical

factors. Verification of the results using expert subjects was intended to identify

clearly those factors related to the design of software development as distinguished

from conditional factors associated with level of subject, type of language, and type

of requirement.

Finally, the characteristics and the properties of common-cause failure modes

in human-software interaction were determined by the analysis of experimental data

collected on the ten expert subjects and compared with data from each of the categor-

www.manaraa.com

83

-) INITIAL DESIGN
. Define Problen

. Define Hypothesis

. Define Variables

9 MATERIAL PREPARATION

PILOT EXPERIMENT

\i/
SUBJECTS CALIBRATION

Requirements Specification

Data Collection Materials

Subject Selection

Subject Education & Training

Subject Consultation

EXPERIMENT EXECUTION

DATA ANALYSIS &

RESULTS PRESENTATION

Dota Collection

Representational Interview

Subject Performance Evaluation

C-C Error Data Analysis Table

Statistical Validations

Geometric Vector Evaluation

Mapping and Simulations

C-C Error Recovery Time Zones

Transition Relationship Diagram

COMMON-CAUSE ERROR CONTROL

MECHANISM & PREVENTION

. H-S Infornation Processing

. Knowledge-Based Engineering

. Intelligent Design

Figure 4.4: The Experimental Procedure in Human-Software Interaction

www.manaraa.com

84

ical conditions. Results obtained during the earlier pilot study conducted suggested

a new cognitive paradigm designed to eliminate and reduce the most common types

of human domain error related to design of software development. These results have

direct application in common-cause error control and prevention.

Problems and hypotheses of experiment

Defining questions to be answered through the main experiment

(1) What are the contents and conditions of human-based errors affected by the

common-cause effect in human-software interaction?

(2) What are the frequency of common-cause error, error correction time, and point

of error occurrence in time in each of the common-cause error modes?

(3) What are the major reasoning common-cause factors for each error recovery time

zone?

(4) What is the relationship between the behavior domain of common-cause error

modê and identification of common-cause error mode, or pattern recognition of er

ror?

.(5) How much difference in common-cause reasoning factors is there among the cat

egorical conditions of subject such as level of subject, type of language, and type of

requirement?

(6) What are the alternative results with the different rated simulations?

Hypothesis More qualified expert subjects in software development will

give a better performance, but the major portion of common-cause error properties in

human-software interactions will not differ significantly among all subjects who have

different categorical conditions such as level of programming expertise, knowledge of

www.manaraa.com

85

programming language, and type of task requirements.

Procedure and method of experiment

Variables and control factors of the experiment The chosen experiment

designed to study the human aspects of software development included the following:

(1) Dependent variables:

Common-cause error modes:

Common-cause error identification mode (/^)

Reasoning pattern error mode (P j)

Behavior error domains {Bj^)

Failure/error frequency

Subject task performance factors:

Correction time to each common-cause error

Point of failure/error occurrence time in each error mode (0^

(2) Independent variables:

Requirement specifications

Subject expertise level

Programming language

(3) Controllable Factors:

Type of task (requirements of assignment)

Program task size

Type of hardware and operating system

(4) Uncontrollable factors:

Subject factors (subject life data, programming experience, typing skill.

www.manaraa.com

86

intelligence, attitude, knowledge)

External common-cause factors (fires, earthquakes, tornadoes, etc.)

Abnormal environments (temperature, humidity/moisture, vibrations)

(5) Conditional factors:

Level of subject: expert 1, expert 2

Type of language: FORTRAN, C

Type of requirement: shop scheduling, inventory system

Preparation of experimental materials Experimental materials were pre

pared for requirement specifications, experimental procedures, data collection, and

data analysis and representations (Appendix B).

(1) Programming requirements including determining the optimal sequence for ma

chine replacement or optimal inventory policy using a simulation consisting of 300-400

lines using Fortran or C

(2) Subject level evaluation

(3) Consultation support

(4) Experiment procedure and subject note

(5) Data collection sheet, error and failure description modes

(6) Questionnaires for personal life data bank

Pilot Experiments A pilot experiment was needed for evaluating and testing

the experimental design. Analysis of the pilot experiment resulted in a redesign and

a re-assessment of effects to be observed.

(1) Project 1 (beginner subjects with LOTUS-123): Project 1 was a three week

experiment using beginner subjects (level 1), and LOTUS-123, a spread-sheet man

www.manaraa.com

87

agement software package. It involved the analysis of an inventory control problem.

Software users, as experimental subjects, simulated the performance of an inventory

management procedure under random demands, selecting management parameters

for optimum (that is, lowest cost) inventory control. During the software task, the

subject as a programmer described his/her reasons for errors in programming be

havior. An observer monitored the data collection and recorded a description of

programmer's error modes.

Experimental period: Key experiment: 10/22, 1990 - 11/16, 1990

Group A: Tue. 8-11 (3hrs/w)

Group B: Thur. 8-11 (3hrs/w)

Subjects(20 subjects):

Group A: 10 students

Group B: 10 students

Experimental design tools:

Subject programming bases: LOTUS-123 (150-200 lines)

Data analysis: SAS, LOTUS-123

(2) Project 2 (2-year experienced intermediate programmers using FORTRAN): Project

2 was conducted by the 2 year experienced intermediate programmers (level 2) using

FORTRAN. The task requirement involved the determination of an optimal sequence

of machines to employ in providing service for a number of years. The development

started with a manual exercise and design of a program to determine appropriate

methods, then proceeded with the development of the FORTRAN program to imple

ment the algorithm. During the FORTRAN programming, the programmer's task

behavior was observed by the project navigator to collect common-cause errors in

www.manaraa.com

88

human-software interactions.

Experimental period; Key experiment: 2/7, 1991 - 3/5, 1991

Group A: Thur. 8-11 (3hrs/w)

Group B: Thur. 11-2 (3hrs/w)

Subjects: (13 subjects)

Group A: 7 students

Group B: 6 students

Experimental design tools:

Subject programming bases; FORTRAN (180-230 lines)

Data analysis: SAS, LOTUS-123

(3) Project 3 (5-8 year experienced expert programmers using FORTRAN or C):

Project 3 was conducted by 5-8 year experienced expert programmers (level 3) who

were paid $6 per hour using FORTRAN or C. The task requirement involved the

determination, using dynamic programming, of an optimal sequence of machines to

employ in providing service for a number of years. The development started with

a manual exercise for problem understanding and for designing the program to de

termine appropriate methods. It then proceeded with developing the program to

implement the algorithm. During programming, the programmer's task behavior

was observed by a supervisor, who was the project navigator, to measure the three

factors of common-cause error modes in human-software interaction processing sys

tems discussed previously.

Experimental period: Key experiment; 3/6, 1991 - 3/28, 1991

Subjects: (13 subjects: 5-8 years experienced experts)

Group A: 7 experts (FORTRAN)

www.manaraa.com

89

Group B: 6 experts (C)

Experimental design tools:

Subject programming bases: FORTRAN or C (180-230 lines)

Data analysis: SAS, LOTUS-123

Subject selection and training Subjects were recruited using public adver

tisements. Their life data was gathered during an individual interview. They were

educated and trained to the exact requirements and procedures of the experiment.

They were also evaluated with respect to programming experience and knowledge

background as objective data, and intelligence to problem solving, experiment atti

tude, and environmental conditions during the experiment as a subjective data for

the subject calibration. The contents of this experimental phase are as follows:

(1) Screening and selecting of subjects

(2) Subjects life data collection

(3) Initialization session:

Problem definition, manual solving and mathematical validation

Requirements of specification

Procedures used in the experiment and data collection

(4) Training session:

Programming requirements

Hardware and operating systems

Data gathering and presentation

(5) Consultation session

Hardware and operating systems

www.manaraa.com

90

Programming language

Programming requirement understanding

Common-cause error modes

(6) Experiment attitude with monitoring log-on time

(7) Subject calibration and evaluation factors: Subjects can be evaluated according to

five categories for comparison regarding their task performance. The rating weights

for these five factors are determined from interviews with an expert programmer.

Programming experience:

Programming experience (years)

Recurrence of programming (months)

Project scale involved (lines)

Knowledge background:

Knowledge of programming language

Familiarity with hardware

Familiarity with operating system

Educational background of requirement

Intelligence;

Problem solving ability

Creativity of entire approach

Requirement understandability

Recognition of project process

Experimental attitude:

Concentration to task

Commitment to regulation

www.manaraa.com

91

Preparation effort to task

Conditions in the work environment:

Entire condition of work station

Noise, temperature, humidity, etc.

Subject physical conditions

Extra mental, psychological stress

Main experiment and data collection The main experiment was then car

ried out and common-cause error data gathered with the following conditions:

Experimental Laboratory: human-software interaction laboratory

Hardware setting: work station: DECstation 2100

Operating setting: VINCENT: ULTRIX

Representation interview session in each 30-45 minutes

Supervisor monitoring using simultaneous logging terminal

(1) Project 4 (5-8 year experienced expert programmers using FORTRAN or C):

Project 4 was carried out using 5-8 year experienced expert programmers who were

paid $6/hr with FORTRAN or C. Two task requirements involved the determination

of an optimal sequence of machines to employ in providing service for a number of

years using dynamic programming or determination of an optimal inventory policy

using simulation. Three educational sessions were employed: an initial session, a

training session, and a consultation session. The program development started with

a manual exercise used for problem understanding and for designing the program

to determine appropriate methods. This was followed by writing of the program

to implement the algorithm. During programming, the programmer's task behavior

www.manaraa.com

92

was observed by a supervisor, the project navigator, using a second terminal to

measure error frequency, error correction time, point of occurrence in time for the

three factored common-cause error modes discussed previously.

Experimental period: Key experiment: 10/4, 1991 - 11/7, 1991

Subjects: (10 subjects: 5-8 years experienced experts)

Subject level: Expert 1, Expert 2

Group A: 5 experts (:FORTRAN)

Group B: 5 experts (:C)

Requirement Specifications:

Optimal machine replacement - using dynamic programming

Optimal inventory policy and system simulation

Experimental design tools:

Subject programming bases: FORTRAN or C (300-400 lines)

Data analysis: SAS, LOTUS-123

• Common-cause data collections: The supervisor(project experimenter) recorded

the contents of subject common-cause error including correction time and time of

occurrence on the data collection sheet. During the data collection session, all of

subject task and behavior were monitored and checked by the supervisor using a

parallel simultaneous logging terminal, and these monitoring properties were taped

in the video tape recorder. There were two different categories of collected data as

follows:

(1) Objective data collection: contents of error, frequency, correction time, and point

of occurrence in time;

(2) Subjective data collection: reason of common-cause error, identification of common-

www.manaraa.com

93

cause error mode, pattern recognition of common-cause error mode, behavior domain

of common-cause error mode, and evaluation factors of subject task performance.

• Representation of common-cause error modes: At the representation interview ses

sion held every 30-45 minutes, common-cause error protocol as the actual location

of human error was associated with the contents of common-cause error. Common-

cause error modes including their identification, pattern recognition, and behavior

error domains were derived from the subject recognition of reasons for error and the

supervisor's objective representational analysis together according to the review of

recorded video tape.

interaction. The human error control mechanisms and prevention was viewed in

the aspects of knowledge-based engineering approach, human-software information

processing system, and human factors orientation. The major results are applied to

intelligent design, knowledge based system, human-software interaction, and behavior

domain model.

www.manaraa.com

94

CHAPTER 5. COMMON-CAUSE ANALYSIS AND RESULT

REPRESENTATION

Experimental data representing common-cause error in human-software interac

tion can be analyzed using statistical methods and geometrical modeling. Results

enable one. to define common-cause domain based on human error and to repre

sent the common-cause error control mechanism. Then, statistically collected data

are analyzed for the evaluation of the subject task, the statistical contents of the

common-cause error experimental data, and their representational characteristics.

Analysis of Subject Task Data

In the pilot projects including Project 2 and Project 3, tasks were conducted

by 26 subjects, averaging 22.9 years in age, 4.3 years of programming experience,

and a typing speed of 4.7 pages per hour. The result was an average total frequency

of error occurrence of 21.3, 182.5 minutes total error correction time during 438.7

minutes of total computing time per each version of software development. Using

correlation analysis, which measures the strength of the linear relationship between

two variables, the Pearson correlation coefficients of programming experience were

-0.05419 for total frequency, -0.48282 for total time spent compute, and -0.42207 for

total correction time. It means that more experienced programmer has less error and

www.manaraa.com

95

better performance. The analysis revealed that programming experience comparing

the two levels, intermediate and expert, had a significant effect to the programmers'

performance.

In the main experiment, two different tests (five subjects using dynamic pro

gramming and five using the inventory control system) were conducted using two

respective languages (C and FORTRAN) with subjects averaging 24 years in age,

5.8 years of programming experience, and a typing skill of 4.4 pages per hour as

shown in Table 5.1. Results consisted of a 32.1 average (9.4 standard deviation) total

common-cause error frequency, and 255.3 minutes average total error correction time

during 523 minutes total computing time per each version of software development.

Time spent in understanding and problem solving was 109 minutes, and design time

for programming was 170 minutes.

Table 5.2 was developed from interviews with the subject programming experts

concerning the experiment in human-software interaction. The purpose of these inter

views was to establish weight rating factors for subject evaluation in the programming

experiment. In the five categories of subject evaluation factors, average rating from

experts' responses are (a) programming experience (23%), (b) knowledge background

(21%), (c) intelligence (23%), (d) experiment attitude (18%), (e) work environmental

conditions (15%).

Subject evaluation factors (a) and (b) are evaluated by objective interview data,

and factors (c), (d), and (e) are evaluated by subjective grading by experiment super

visor for aver all subject task performance during the experiment. Table 5.3 shows

the subject overall performance score applied with rating factors to evaluate expert

level during the programming experiment. As a result, with average evaluation score

www.manaraa.com

96

Table 5.1: Subject Task Data in A Common-Cause Model Experiment®

S-ID^' Reqt^ Exp(^ FreqG Ct-T/ Com-T5 Sol-T^^ Des-T^ Tot-TJ
P4C01 P4-B 5 24.0 256.0 452 120 300 872
P4C02 P4-B 7 27.0 242.5 494 60 90 644
P4C03 P4-A 8 25.0 119.5 256 60 60 376
P4C04 P4-A 5 32.0 432.5 781 180 270 1231
P4C05 P4-A 5 52.0 487.5 886 180 210 1276
P4F06 P4-B 5 38.0 312.5 535 120 240 955
P4F07 P4-B 6 43.0 123.0 482 70 50 602
P4F08 P4-B 6 29.0 158.0 403 60 60 523
P4F09 P4-A 6 23.0 144.5 255 120 120 495
P4F10 P4-A 5 28.0 277.0 686 120 240 1046
MEAN: . 5.8 32.1 255.3 523 109 170 802
S.D.: 1.0 9.4 127.8 208.2 46.3 104.2 318.9

^Expressed as time in min.

^S-ID: Subject Identification No.
''Reqt: type of requirement(A: dynamic programming, or B: inventory control).

^Exp: programming experience (years).
®Freq: frequency of common-cause error mode.

Ct-T: correction time of error.
^Com-T: computing time of program.

^Sol-T: problem solving time.

^Des-T: program design time.
•^Tot-T: total spent time.

www.manaraa.com

97

Table 5.2: Weight Rating Factors for Subject Evaluation: Interview Search from
Programming Experts

a3 bl b2 b3 b4 cl c2 c3 c4 dl d2 d3 el e2 e3 e4
A 5 4 4 2 1
. 3 2 2 3 1 1 2 3 3 3 3 3 2 3 1 2 2 3
B 3 5 5 3 3
. 2 2 2 3 1 2 3 3 2 3 2 2 2 2 1 1 2 3
C 4 3 5 3 3
. 3 3 2 3 1 2 3 3 2 3 2 3 2 2 1 2 3 3
D 4 3 5 2 2 ,

. 3 3 2 2 2 2 1 3 2 2 2 3 2 2 1 2 1 3
E 5 5 4 4 4
. 3 3 2 3 2 3 3 3 1 3 2 3 1 2 3 2 3 3
F 5 3 5 3 2 •

. 2 3 3 3 1 2 1 3 3 3 1 2 3 3 1 1 2 2
G 4 5 3 3 3
. 3 3 3 3 2 2 2 3 3 3 3 3 2 3 3 3 3 3
H 5 4 5 5 4 •

. 3 3 1 3 2 2 2 3 1 3 2 3 3 2 3 3 2 3
I 5 4 4 4 2
. 3 3 1 3 2 2 2 3 2 3 2 3 2 3 2 1 2 3
J 4 3 3 4 5 .
. 2 3 2 3 1 2 1 3 2 3 2 3 3 3 3 3 3 3
TU . 39 43 33 . 29 .
. 27 28 20 29 15 20 20 30 21 29 21 28 22 25 20 20 23 29

R^3 21 23 18 15
. 36 37 27 34 18 24 24 29 21 29 21 37 30 33 22 22 25 31

^I: programming expert interview.

^a,b,c,d,e: evaluation factors for expert level; al,a2,a3: evaluation subfactors for
a.

^T: total score(upper: score for a, b, c, d, e; lower: score for subfactors al, a2,
a3).

^R: rating percentage for subject evaluation.

www.manaraa.com

98

of 4.3 and standard deviation of 0.5, a expert level 1 group included C03 (4.9), F09

(4.8), C02 (4.8), F06 (4.5), and F08 (4.3), and a expert level 2 group included F07

(4.2), COl (4.1), C04 (3.8), COS (3.6), and FIO (3.5).

Common-Cause Mode-Oriented Data Statistics

Experimentally collected data were analyzed using statistical methods and ge

ometrical configurations to define the common-cause error reasons and to represent

the error mechanism.

Common-cause error mode data and analysis table

Common-cause error modes are shown in Table 5.4 for the three factors /^, Pj,

Bj, with three evaluating variables, frequency j ̂), correction time (Qj^j^;), and

point of occurrence time (Oj j in each common cause error mode. Figures 5.1 5.2 5.3

show the portion of common-cause errors in each of the three error modes indicating

their contents in terms of identification, pattern recognition, and behavior domain in

human-software interaction. With the error occurrence frequency factor, the ma

jor reasoning categories in each common-cause error mode are: in the identification

mode, 1.3 (19.4%), 1.2 (16.2%), and I.l (15.9%); in the pattern recognition mode, P.2

(33.7%), P.3 (18.0%), and P.l (15.7%); in the behavior domain mode, B.3 (43.6%)

and B.2 (36.5%). When the error correction time factor is applied, I.l (26.2%),

1 . 5 (1 6 . 6 %) , a n d 1 . 8 (1 3 . 9 %) i n t h e m o d e ; P . 2 (4 4 . 8 %) a n d P . l (2 1 . 2 %) i n t h e Pj

mode; and B.3 (62.7%) and B.2 (28.1%) in the Bj. mode. On the aspect of error

correction time per error frequency (CT/F), the major effort in each common-cause

error mode resulted in I.l (12.9 minutes/frequency), 1.5 (11.6) and 1.6 (10.1) in the

www.manaraa.com

99

Table 5.3: Subject Level Evaluation with Rating Factors

S" al" a2 a3 bl 1)2 b3 1,4 cl c2 c3 c4 (11 (12 (13 el e2 e3 c4

I 3.6^ 4.2 4.2 . . 3.9 . 5.0 . . .

d.l'' 4® 3 4 4 5 4 4 4 4 4 5 4 4 4 5 5 5 5
2 4.6 4.8 5.0 4.9 5.0
4.8 5 4 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5
3 4.6 5.0 5.0 4.9 5.0
4.9 5 4 5 5 5 5 5 5 5 5 5 ,5 5 5 5 5 5 5
4 3.9 3.8 3.4 3.2 5.0
3.8 4 3 5 4 4 4 3 3 4 3 4 3 4 3 5 5 5 5
5 3.7 3.4 3.2 13 5.0
3.6 4 4 3 3 4 4 3 3 3 3 4 4 3 3 5 5 5 5
6 4.2 5.0 4.0 4.6 5.0
4.5 4 4 5 5 5 5 5 4 4 4 4 5 5 4 5 5 5 5
7 4.6 4.8 4.0 2.9 5.0
4.2 4 5 5 5 5 5 4 4 4 4 4 3 3 3 5 5 5 5
8 3.6 4.4 4.8 3.9 5.0
4.3 4 3 4 4 5 4 5 5 4 5 5 4 4 4 5 5 5 5
9 4.3 5.0 4.8 4.9 5.0
4.8 4 5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5
10 3.3 3.4 3.2 2.9 5.0
3.5 4 3 3 3 4 4 3 3 3 3 4 3 3 3 5 5 5 5

nal^23 21 23 18 15
. 36 37 27 34 18 24 24 29 21 29 21 37 30 33 22 22 25 31
Avg4.0 . 4.4 , 4.2 . 3.9 5.0 .
4.3 4.1 3.8 4.3 4.3 4.7 4.5 4.1 4.1 4.1 4.1 4.4 4.0 4.1 3.9 5 5 5 5
SD 0.5 . 0.6 0.7 0.8 0
0.5 0.4 0.7 0.7 0.7 0.4 0.5 0.8 0.7 0.7 0.8 0.4 0.8 0.8 0.8 0 0 0 0

®S; experiment subject identification no.
^a,b,c,d,e: evaluation factors for subject expert level; al,a2,a3: evaluation subfac-

tors for factor a.
•^upper score: score for a,b,c,d,e.
^Evl score: final evaluation score for subject expertise level.
®lower score: score for subfdctors al,a2,a3.
/Rat: rating percentage for subject evaluation.

www.manaraa.com

100

Table 5.4: Common-Cause Error Mode and Experimental Data Analysis: Total ^

CCM^ Freq CT POT CT/F-/

I.l 54 15.9% 697.0 26.2% 369.7 70.7% 12.9
1.2 55 16.2% 317.0 11.9% 217.7 41.6% 5.8
1.3 66 19.4% 224.0 8.4% 230.7 44.1% 3.4
1.4 30 8.8% 189.0 7.1% 260.0 50.9% 6.3
1.5 38 11.2% 442.0 16.6% 320.5 61.3% 11.6
1.6 35 10.3% 354.0 13.3% 235.4 45.0% 10.1
1.7 24 7.0% 72.0 2.7% 163.3 31.2% 3.0
1.8 38 11.2% 369.0 13.8% 359.2 68.7% 9.7

Tot 340 100.0% 2664.0 100.0% 523.05 ' 51.7%^ 7.8*
P.l 55 15.7% 583.5 21.2% 254.1 48.6% 10.6
P.2 118 33.7% 1234.0 44.8% 292.4 55.9% 10.5
P.3 63 18.0% 168.5 6.1% 248.8 47.6% 2.7
P.4 17 4.9% 140.5 5.1% 250.5 47.9% 8.3
P.5 24 6.8% 83.0 3.0% 223.2 42.7% 3.5
P.6 9 2.6% 80.5 2.9% 238.8 45.7% 8.9
P.7 26 7.4% 216.0 7.9% 316.9 60.6% 8.3
P.8 22 6.3% . 84.5 3.1% 207.7 39.7% 3.8
P.9 16 4.6% 163.0 5.9% 198.1 37.9% 10.2
Tot 350 100.0% 2753.5 100.0% 523.8 47.4% 7.9
B.l. . 55 16.3% 86.5 3.2% 246.5 47.1% 1.6
B.2 123 36.5% 754.0 28.1% 257.2 49.2% 6.1
B.3 147 43.6% 1681.5 62.7% 280.0 53.5% 11.4
B.4 12 3.6% 160.5 6.0% 289.2 55.3% 13.4
Tot 337 100.0% 2682.5 100.0% 523.0 51.3% 8.0

identification of common-cause error mode, Pf- pattern recognition of

common-cause error mode, Bj^: behavior domain of common-cause error mode.

^CCM; common-cause error mode.
j portion(%) of total frequency.

I

portion(%) of correction time.

j average point of occurrence in time from total 100 % completion time.

f CT/F: correction time per frequency(unit: time in min.).
^total 100% completion time.

^average percentage of 0^- j

^average time of CT/F.

www.manaraa.com

101

28 '

26 •

2+

22

20

IB

1 6

14

12

to

B

6

4

2

0

Identification of C—C Error Mode
FrequencyC///) & Correction TlmeC\\\)

Z\N K/\N K/\N K/\

rq

IZ

21 ̂

F:

1.1 1.2 1.3 1.4 1.5

Identification of C-C Ernor Wode

1.6 1.7 1.8

Figure 5.1: Portion of Identification of Common-Cause Error Mode

www.manaraa.com

102

Pattern Recognition of C—C Error Mode
Frequency(///) & Correction Tlme(\\\)

45

40

35

30

25

20

15

1 0

5

0

Figure 5.2: Portion of Pattern Recognition of Common-Cause Error Mode

%
[Z

p.2 p.3 P. 4 P.5 P.6 P.7

Pottern Recognition of C-C Error Mode

P.B P.9

www.manaraa.com

103

Behavior Domain of C—C Error Mode
Frequency(///) Se Correcfion Tlme(\\\)

60 -

50 -

40 —

30 -

B.t B.4 B.2 B.3

Behavior Domain of C-C En-or Mode

Figure 5.3: Portion of Behavior Domain of Common-Cause Error Mode

www.manaraa.com

104

/j mode; P.l (10.6), P.2 (10.5), and P.9 (10.2) in the Pj mode; B.4 (13.4) and B.3

(11.4) in the Bj, mode during the programming experiment.

Using a comparison of major reasoning modes with geometric vector evaluations

between language C group and language Fortran group (Tables 5.5 and 5.6), the

difference is 1.5 and 1.8 of second and third place in identification mode. P.6 and B.4

had bigger vector values in Fortran group. Using a comparison of major reasoning

modes with geometric vector evaluations between requirement A and B (Tables 5.7

and 5.8), there was no difference on trend in the identification mode and in the

behavior error domain mode. P.l and P.7 were diiferent rank of second and third

place in pattern recognition. Using a comparison of major reasoning modes with

geometric vector evaluations between programming expertise level 1 and level 2 (Ta

bles 5.9 and 5.10), there was no difference on trend in the behavior error domain

mode. 1.4 and 1.5 were different rank of third and fourth place in identification mode.

P.5 had a bigger value of vector evaluation in expert level 2 as a better programming

expertise subject group.

Figures 5.4, 5.5, and 5.6 show plots of proportional mean frequency based on six

criteria for characteristics of each common-cause error mode. All trends are similar

except for 1.3 and 1.4 in the common-cause identification mode. Figures 5.7,

5.8, and 5.9 show plots of proportional mean correction time based on six criteria

for each common-cause error mode. There are no significant differences in pattern

recognition and behavior domain. However, 1.4 and 1.5 in the identification mode

have a little difference in correction time. Figures 5.10, 5.11, and 5.12 show plots

of proportional mean occurrence time based on six criteria for each common-cause

error mode.

www.manaraa.com

105

Table 5.5: Common-Cause Error Mode - Data Analysis: Language-C °

CCM Freq F- • CT POT CT/F® V(l:l:l)-/

I.l 27 15.9% 461.5 28.7% 408.0 71.1% 17.1 78.3
1.2 30 17.6% 211.5 13.2% 228.0 39.7% 7.1 45.4
1.3 33 19.4% 113.0 7.0% 243.2 42.4% 3.4 47.2
1.4 8 4.7% 41.0 2.5% 255.2 44.5% 5.1 44.8
1.5 21 12.4% 306.0 19.0% 322.9 56.3% 14.6 60.7
1.6 18 10.6% 226.0 14.1% 267.1 46.6% 12.6 49.8
1.7 16 9.4% 33.0 2.1% 155.8 27.2% 2.1 28.8
1.8 17 10.0% 215.0 13.4% 415.6 72.4% 12.7 74.3
Tot 170 100.0% 1607.0 100.0% 573.8^ 50.0%^ 9.5' 53.7;
P.l 27 15.3% 323.5 18.9% 269.2 46.9% 12.0 52.9
P.2 64 36.4% 870.0 50.8% 303.4 52.9% 13.6 81.9
P.3 31 17.6% 76.0 4.4% 278.5 48.5% 2.5 51.8
P.4 12 6.8% 120.0 7.0% 270.4 47.1% 10.0 48.1
P.5 13 7.4% 58.0 3.4% 230.3 40.1% 4.5 41.0
P.6 5 2.9% 37.5 2.2% 173.1 30.2% 7.5 30.4
P.7 9 5.1% 105.0 6.1% 323.7 56.4% 11.7 57.0
P.8 6 3.4% 56.5 3.3% 224.8 39.2% 9.4 39.5
P.9 9 5.1% 66.0 3.9% 198.6 34.6% 7.3 35.2
Tot 176 100.0% 1712.5 100.0% 573.8 44.0% 9.7 48.6
B.l. . 26 15.6% 50.5 3.2% 257.9 44.9% 1.9 47.7
B.2 65 39.2% 457.0 29.2% 270.6 47.2% 7.0 67.9
B.3 74 44.6% 1035.0 66.2% 294.5 51.3% 14.0 94.9
B.4 1 0.6% 22.0 1.4% 179.0 31.2% 22.0 31.2
Tot 166 100.0% 1564.5 100.0% 573.8 43.7% 9.4 60.4

a T.. identification of common-•cause error mode, P J : pattern recognition of

common-cause error mode, behavior domain of common-cause error mode.

j portion(%) of total frequency.
portion(%) of correction time.

j average point of occurrence in time from total 100 % completion time.
®CT/F: correction time per frequency(unit: time in min.).

geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^average percentage of

^average time of CT/F.
average vector value in V(1:1:1).

www.manaraa.com

106

Table 5.6: Common-Cause Error Mode - Data Analysis: Language-Fortran ®

CCM Freq F- • I} CT POT CT/F® V(l:l:l)'f

I.l 27 15.9% 235.5 22.3% 331.4 70.2% 8.7 75.3
1.2 25 14.7% 105.5 10.0% 207.3 43.9% 4.2 47.4
1.3 33 19.4% 111.0 10.5% 218.1 46.2% 3.4 51.2
1.4 22 12.9% 148.0 14.0% 274.7 58.2% 6.7 61.2
1.5 17 10.0% 136.0 12.9% 318.0 67.4% 8.0 69.3
1.6 17 10.0% 128.0 12.1% 203.7 43.1% 7.5 45.9
1.7 8 4.7% 39.0 3.7% 172.8 36.6% 4.9 37.1
1.8 21 12.4% 154.0 14.5% 302.7 64.1% 7.3 66.9

Tot 170 100.0% 1057.0 100.0% 472.2^ 53.7%^ 6.2* 56.8;
P.l 28 16.1% 260.0 25.0% 238.9 50.6% 9.3 58.7
P.2 54 31.0% 364.0 35.0% 281.3 59.6% 6.7 75.7
P.3 32 18.4% 92.5 8.9% 218.9 46.4% 2.9 50.6
P.4 5 2.9% 20.5 2.0% 225.8 47.8% 4.1 47.9
P.5 11 6.3% 25.0 2.4% 216.0 45.7% 2.3 46.2
P.6 4 2.3% 43.0 4.1% 282.5 59.8% 10.8 60.0
P.7 17 9.8% 111.0 10.6% 310.0 65.7% 6.5 67.2
P.8 16 9.2% 28.0 2.7% 200.8 42.5% 1.8 43.6
P.9 7 4.0% 97.0 9.3% 197.5 41.8% 13.9 43.0
Tot 174 100.0% 1041.0 100.0% 472.2 51.1% 6.0 54.8
B.l, . 29 17.0% 36.0 3.2% 235.2 49.8% 1.2 52.7
B.2 58 33.9% 297.0 26.6% 243.7 51.6% 5.1 67.2
B.3 73 42.7% 646.5 57.8% 265.4 56.2% 8.9 91.3
B.4 11 6.4% 138.5 12.4% 316.8 67.1% 12.6 68.5
Tot 171 100.0% 1118.0 100.0% 472.2 56.2% 6.5 69.9

identification of common-cause error mode, P J : pattern recognition of

common-cause error mode, behavior domain of common-cause error mode.

portion(%) of total frequency.
portion(%) of correction time.

average point of occurrence in time from total 100 % completion time.
®CT/F: correction time per frequency(unit: time in min.).

^geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^average percentage of j

^average time of CT/F.

^average vector value in V(l:l:l).

www.manaraa.com

107

Table 5.7: Common-Cause Error Mode - Data Analysis: Requirement-A ®

CCM Freq CT POT CT/F® V(l:l:l)^

1.1 25 15.1% 370.5 23.8% 426.9 74.5% 14.8 79.7
1.2 29 17.5% 238.5 15.3% 214.8 37.5% 8.2 44.1
1.3 39 23.5% 113.0 7.3% 238.9 41.7% 2.9 48.4
1.4 11 6.6% 73.0 4.7% 276.2 48.2% 6.6 48.9
1.5 19 11.4% 291.0 18.7% 343.3 59.9% 15.3 63.8
1.6 19 11.4% 244.0 15.7% 198.2 34.6% 12.8 39.7
1.7 10 6.0% 16.0 1.0% 263.4 46.0% 1.6 46.4
1.8 14 8.5% 210.0 13.5% 446.3 77.9% 15.0 79.5
Tot 166 100.0% 1556.0 100.0% 572.8^ 52.6%^ 9.4* 56.3;
P.l 24 14.1% 275.0 17.5% 259.3 45.3% 11.5 50.6
P.2 65 38.2% 809.5 51.5% 310.6 54.2% 12.5 84.0
P.3 31 18.2% 76.5 4.9% 253.9 44.3% 2.5 48.2
P.4 10 5.9% 86.5 5.5% 238.7 41.7% 8.7 42.4
P.5 12 7.1% 49.5 3.1% 175.8 30.7% 4.1 31.7
P.6 3 1.8% 35.5 2.3% 247.5 43.2% 11.8 43.3
P.7 7 4.1% 105.0 6.7% 352.5 61.5% 15.0 62.0
P.8 9 5.3% 60.5 3.8% 239.4 41.8% 6.7 42.3
P.9 9 5.3% 74.0 4.7% 213.1 37.2% 8.2 37.9
Tot 170 100.0% 1572.0 100.0% 572.8 44.4% 9.3 49.2
B.l. . 27 16.5% 46.0 3.0% 261.4 45.6% 1.7 48.6
B.2 65 39.6% 474.0 30.6% 264.3 46.1% 7.3 68.1
B.3 69 42.1% 965.0 62.3% 303.6 53.0% 14.0 92.0
B.4 3 1.8% 64.0 4.1% 327.0 57.1% 9.5 57.3
Tot 164 100.0% 1549.0 100.0% 572.8 50.5% 9.5 66.5

identification of common-cause error mode, Pj: pattern recognition of

common-cause error mode, Bj.: behavior domain of common-cause error mode.

portion(%) of total frequency.

j portion(%) of correction time.

j average point of occurrence in time from total 100 % completion time.
®CT/F: correction time per frequency(unit: time in min.).

^geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^average percentage of O- • i,.

^average time of CT/F.
average vector value in V(l:l:l).

www.manaraa.com

108

Table 5.8: Common-Cause Error Mode - Data Analysis: Requirement-B ^

CCM Freq F- • CT POT CT/F® V(l:l:l)-/

I.l 29 16.7% 326.5 29.5% 312.5 66.0% 11.3 74.2
1.2 26 14.9% 78.5 7.1% 220.6 46.6% 3.0 49.5
1.3 27 15.5% 111.0 10.0% 222.4 47.0% 4.1 50.5
1.4 19 10.9% 116.0 10.5% 283.3 60.0% 6.1 61.7
1.5 19 10.9% 151.0 13.6% 296.5 62.7% 8.0 65.1
1.6 16 9.2% 110.0 9.9% 238.2 50.3% 6.9 52.1
1.7 14 8.1% 56.0 5.1% 172.9 36.5% 4.0 37.8
1.8 24 13.8% 159.0 14.3% 310.8 65.7% 6.6 68.6
Tot 174 100.0% 1108.0 100.0% 473.2^ 54.3%^ 6.4* 57.4J'
P.l 31 17.2% 308.5 26.1% 248.8 52.6% 10.0 61.2
P.2 53 29.4% 424.5 35.9% 274.1 57.9% 8.0 74.3
P.3 32 17.8% 92.0 7.8% 243.5 51.5% 2.9 55.0
P.4 7 3.9% 54.0 4.6% 265.3 56.1% 7.7 56.4
P.5 12 6.7% 33.5 2.9% 270.5 57.2% 2.8 57.6
P.6 6 3.3% 45.0 3.8% 232.9 49.2% 7.5 49.5
P.7 19 10.6% 111.0 9.4% 281.1 59.4% 5.8 61.1
P.8 13 7.2% 24.0 2.0% 165.3 34.9% 1.9 35.7
P.9 7 3.9% 89.0 7.5% 178.1 37.6% 12.7 38.6
Tot 180 100.0% 1181.5 100.0% 473.2 50.7% 6.6 54.4
B.l. . 28 16.2% 40.5 3.6% 231,7 49.0% 1.5 51.7
B.2 58 33.5% 280.0 24.7% 250.1 52.8% 4.8 67.3
B.3 78 45.1% 716.5 63.2% 256.3 54.2% 9.2 94.7
B.4 9 5.2% 96.5 8.5% 232.6 49.1% 10.7 50.2
Tot 173 100.0% 1133.5 100.0% 473.2 51.3% 6.6 66.0

identification of common-•cause error mode. pattern recognition of

common-cause error mode, behavior domain of common-cause error mode.

portion(%) of total frequency.

portion(%) of correction time.

^Oi j k'- average point of occurrence in time from total 100 % completion time.
®CT/F: correction time per frequency(unit: time in min.).

geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^average percentage of j

^average time of CT/F.
^average vector value in V(l:l:l).

www.manaraa.com

109

Table 5.9: Common-Cause Error Mode - Data Analysis: Expert Level 1 ®

CCM Freq F- • CT POT CT/F® V(l:l:l)/
1.1 27 14.5% 403.0 24.4% 469.7 71.5% 14.9 76.9
1.2 29 15.6% 221.0 13.4% 272.7 41.5% 7.6 46.3
1.3 46 24.7% 146.5 8.9% 299.0 45.5% 3.2 52.5
1.4 11 5.9% 54.0 3.3% 301.0 45.8% 4.9 46.3
1.5 22 11.8% 367.0 22.2% 422.6 64.3% 16.7 69.0
1.6 21 11.3% 243.0 14.7% 292.2 44.5% 11.6 48.2
1.7 10 5.4% 17.5 1.1% 206.9 31.5% 1.8 32.0
1.8 20 10.8% 199.0 12.0% 468.7 71.3% 10.0 73.1

Tot 186 100.0% 1651.0 100.0% 657.4f 52.0%^ 8.9* 55.5;
P.l 33 17.4% 368.0 21.2% 313.5 47.7% 11.1 55.0
P.2 72 37.9% 866.0 49.8% 364.1 55.4% 12.0 83.6
P.3 35 18.4% 93.0 5.3% 302.2 46.0% 2.7 49.8
P.4 10 5.3% 101.0 5.8% 336.4 51.2% 10.1 51.8
P.5 10 5.3% 54.0 3.1% 219.2 33.3% 5.4 33.9
P.6 2 1.0% 31.0 1.8% 313.5 47.7% 15.5 47.7
P.7 9 4.7% 101.0 5.8% 434.1 66.0% 11.2 66.5
P.8 12 6.3% 69.0 4.0% 303.1 46.1% 5.8 46.7
P.9 7 3.7% 55.0 3.2% 268.6 40.9% 7.9 41.2
Tot 190 100.0% 1738.0 100.0% 657.4 48.3% 9.2 52.9
B.l, . 29 15.8% 54.5 3.3% 310.3 47.2% 1.9 49.9
B.2 70 38.3% 518.5 31.5% 325.4 49.5% 7.4 70.0
B.3 81 44.3% 1041.0 63.1% 349.2 53.1% 12.9 93.6
B.4 3 1.6% 35.0 2.1% 394.3 60.0% 11.7 60.0
Tot 183 100.0% 1649.0 100.0% 657.4 52.5% 9.0 68.4

"4= identification of common-•cause error mode, PF. pattern recognition of

common-cause error mode, behavior domain of common-cause error mode.

portion(%) of total frequency.
portion(%) of correction time.

^Oi j k'- average point of occurrence in time from total 100 % completion time.

^CT/F: correction time per frequency(unit: time in min.).

geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^average percentage of j

^average time of CT/F.
average vector value in V(l:l:l).

www.manaraa.com

110

Table 5.10: Common-Cause Error Mode - Data Analysis: Expert Level 2 ®

CCM Freq CT POT
^i,i,k

CT/F® V(l:l:l)/

I.l 27 17.5% 294.0 29.0% 269.7 69.4% 10.9 77.2
1.2 26 16.9% 96.0 9.5% 162.7 41.9% 3.7 46.1
1.3 20 13.0% 77.5 7.6% 162.3 41.8% 3.9 44.4
1.4 19 12.3% 135.0 13.3% 238.0 61.2% 7.1 63.9
1.5 16 10.4% 75.0 7.4% 218.3 56.2% 4.7 57.6
1.6 14 9.1% 111.0 11.0% 178.6 46.0% 7.9 48.1
1.7 14 9.1% 54.5 5.4% 128.5 33.1% 3.9 34.7
1.8 18 11.7% 170.0 16.8% 249.6 64.2% 9.4 67.4

Tot 154 100.0% 1013.0 100.0% 388.6^ 51.7%^ 6.6* 54.9;
P.l 22 13.7% 215.5 21.2% 194.6 50.1% 9.8 56.1
P.2 46 28.7% 368.0 36.3% 220.6 56.8% 8.0 73.2
P.3 28 17.5% 75.5 7.4% 195.2 50.2% 2.7 53.7
P.4 7 4.4% 39.5 3.9% 143.2 36.9% 5.6 37.3
P.5 14 8.8% 29.0 2.9% 227.1 58.5% 2.1 59.2
P.6 7 4.4% 49.5 4.9% 188.9 48.6% 7.1 49.1
P.7 17 10.6% 115.0 11.3% 199.7 51.4% 6.8 53.7
P.8 10 6.3% 15.5 1.5% 136.1 35.0% 1.6 35.6
P.9 9 5.6% 108.0 10.6% 169.9 43.7% 12.0 45.3
Tot 160 100.0% 1015.5 100.0% 388.6 47.9% 6.4 51.5
B.l. . 26 16.9% 32.0 3.1% 182.7 47.0% 1.2 50.1
B.2 53 34.4% 235.5 22.8% 188.9 48.6% 4.4 63.8
B.3 66 42.9% 640.5 62.0% 210.7 54.2% 9.7 92.8
B.4 9 5.8% 125.5 12.1% 219.2 56.4% 13.9 58.0
Tot 154 100.0% 1033.5 100.0% 388.6 51.6% 6.7 66.2

a T.. identification of common-•cause error mode, Pj: pattern recognition of

common-cause error mode, Bf.: behavior domain of common-cause error mode.

Portion(%) of total frequency.
Portion(%) of correction time.

^Oi j yr. average point of occurrence in time from total 100 % completion time.
®CT/F: correction time per frequency(unit: time in min.).

^geometric vector evaluation value with 1:1:1 rating.
^total 100% completion time.

^ total 100% completion time.
^average time of CT/F.

average vector value in V(l:l:l).

www.manaraa.com

I l l

C-C ERROR IDENTIFICATION MODE

s-
c V
3 o-

8
E
(£

FREQUENCY: C. F, A, B, LI. L2

20 -

C-C Error Idenliflcollon Mode
OA A B X LI L2

Figure 5.4: Portion of Frequency in Identification of Common-Cause Error Mode

www.manaraa.com

112

C-C ERROR PATTERN RECOGNITION MODE
FREQUENCY: C, F. A. 0. LI. L2

20 -

+ F
C-C Error Pollem Récognition Mode
OA A B X LI V L2

Figure 5.5: Portion of Frequency in Pattern Recognition of Common-Cause Error

Mode

www.manaraa.com

113

C-C ERROR BEHAVIOR DOMAIN MODE
FREQUENCY: C, F, A, B, LI. L2

50

+5 -

40 -

35 -

30 -

25 -

20 -

B.I B.4 B.2 B.3

C—C Error Behavior Oomain Mode
O 0 + F O A A B X L I V L 2

Figure 5.6: Portion of Frequency in Behavior Domain of Common-Cause Error

Mode

www.manaraa.com

114

C-C ERROR IDENTIFICATION MODE
CORRECTION TIME! C, F, A. B. LI. L2

20 -

C-C Error Idenliricallon Mode
OA A Q X LI V L2

Figure 5.7: Portion of Correction Time in Identification of Common-Cause Error

Mode

www.manaraa.com

115

C-C ERROR PATTERN RECOGNITION MODE
CORRECTION TIME: C. F, A. B. LI. L2

GO

50 -

30 -

20 -

P.I P.9 P.2 P.B P.3 P.4 P.B P.5

C-C Error Pallem Recognlllon Mode
O C + F O A A B X L I V L 2

Figure 5.8: Portion of Correction Time in Pattern Recognition of Common-Cause

Error Mode

www.manaraa.com

116

C-C ERROR BEHAVIOR DOMAIN MODE
CORRECTION TIME! C. F, A, 0. LI. L2

V

Ê p
c
o 73 U
fc
S

g
I
s.

50 —'

0.4

C-C Error Behavior Domain Mode
OA A 0 X LI V L2

Figure 5.9: Portion of Correction Time in Behavior Domain of Common-Cause Er

ror Mode

www.manaraa.com

117

P.4, P.5 and P.6 in the pattern recognition mode and B.4 in behavior domain

mode result in different relative proportions but the remaining common-cause error

modes show a strong trend for comparison among the various proportional means.

Value of the common-cause function and simulated rating

Each value listed in the common-cause function parameters can be produced by

three factors, j j O^ j For example, using a 1:1:1 weight rate simulation:

C((/i (0.159,0.262,0.707), 72(0.162,0.119,0.416), 73(0.194,0.084,0.441),

74(0.088,0.071,0.509), 75(0.112,0.166,0.613), 76(0.103,0.133,0.450),

77(0.071,0.027,0.312), 78(0.112,0.139,0.687)), (Pi (0.157,0.212,0.486),

7 2̂(0.337,0.448,0.559), P3 (0.180,0.061,0.476), (0.049,0.051,0.479),

• P5 (0.069,0.030,0.427), PQ (0.026,0.029,0.457), PJ (0.074,0.078,0.606),

Pg(0.063,0.031,0.397), Pg(0.046,0.059,0.379)), (0.163,0.032,0.471),

B2(0.365, 0.281,0.492), B3 (0.436,0.627,0.535), B4 (0.036,0.060,0.553))).

From these common-cause profiles, one can determine the major common-cause error

mode in terms of error frequency, error correction time, and point of error occurrence

in time. The common-cause function can be simulated with different weighting of

variables' rating as in Table 5.11. The final evaluation value of these common-cause

functions can be produced using the geometrical vector evaluation method.

www.manaraa.com

118

COMMON-CAUSE ERROR IDENTIFICATION MODE
OCCURRENCE TIME: C. F. A. B. LI, L2

Common-Cause Error Idenllflcallon Mode
OA A B X LI L2

Figure 5.10: Portion of Occurrence Time in Identification of Common-Cause Error

Mode

www.manaraa.com

119

C-C ERROR PATTERN RECOGNITION MODE
OCCURRENCE TIME: C. F, A. B, LI, L2

V
E
P
V
V
c
Ë 3
y
o

I
V.
s. 40 -

C-C Error Pollerri Recognlllon Mode
OA a B X LI L2

Figure 5.11: Portion of Occurrence Time in Pattern Recognition of Common-Cause

Error Mode

www.manaraa.com

120

C-C ERROR BEHAVIOR DOMAIN MODE
OCCURRENCE TIME! C, F. A. B, LI, L2

70

65 -

60 -

55 -

40 -

35 -

30

B.4 B.I 0.2 B.3

C—C Error Behovlor Domain Mode
• C + F O A A B X L I V L 2

Figure 5.12: Portion of Occurrence Time in Behavior Domain of Common-Cause

Error Mode

www.manaraa.com

121

Table 5.11: Vector Evaluation with Rating Simulation °

CCM b
- -

y \ c V2 V3 V4 V5 V6 V7 V8

-
pd CP o/ 1:1:1 1:2:3 2:1:3 3:2:1 1:3:2 3:1:2 2:3:1 2:2:1

I.l 15.9 26.2 70.7 77.1 219.1 216.1 100.1 162.6 151.5 110.4 93.6
1.2 16.2 11.9 41.6 46.2 128.1 129.5 68.3 92.0 97.1 63.7 57.9
1.3 19.4 8.4 44.1 48.9 134.8 138.1 74.9 93.8 106.0 63.9 61.1
1.4 8.8 7.1 50.9 52.1 153.6 153.9 59.1 104.4 105.4 57.9 55.7
1.5 11.2 16.6 61.3 64.5 187.2 186.0 77.4 132.8 128.2 82.1 73.2
1.6 10.3 13.3 45.0 48.0 138.0 137.2 60.7 99.0 96.1 63.6 56.2
1.7 7.0 2.7 31.2 32.1 94.0 94.7 38.0 63.3 65.9 35.1 34.6
1.8 11.2 13.8 68.7 71.0 208.2 207.8 81.3 143.9 142.1 83.3 77.4
P.l 15.7 21.2 48.6 55.3 152.6 150.6 79.9 117.2 110.1 86.0 71.7
P.2 33.7 44.8 55.9 79.2 193.1 186.2 146.2 178.0 157.2 160.4 125.3
P.3 18.0 6.1 47.6 51.3 144.4 147.4 73.0 98.6 109.6 62.4 60.9
P.4 4.9 5.1 47.9 48.4 144.1 144.1 51.1 97.1 97.1 51.2 49.9
P.5 6.8 3.0 42.7 43.3 128.4 128.9 47.7 86.1 87.9 45.7 45.2
P.6 2.6 2.9 45.7 45.9 137.2 137.2 46.7 91.8 91.8 46.8 46.4
P.7 7.4 7.9 60.6 61.6 182.6 182.6 66.4 123.7 123.5 66.7 64.4
P.8 6.3 3.1 39.7 40.3 119.4 119.8 44.4 80.2 81.7 42.7 42.1
P.9 • 4.6 5.9 37.9 38.6 114.4 114.2 42.0 78.0 77.3 42.8 40.7
B.l 16.3 3.2 47.1 49.9 142.4 145.0 68.2 96.1 106.2 58.1 57.6
B.2 36.5 28.1 49.2 67.4 162.1 167.0 132.5 134.6 149.9 121.9 104.4
B.3 43.6 62.7 53.5 93.2 208.3 193.1 188.9 220.8 180.2 214.1 161.8
B.4 3.6 6.0 55.3 55.7 166.4 166.2 57.6 112.1 111.3 58.6 57.0

identification of common-cause error mode, Pj: pattern recognition of

common-cause error mode, behavior domain of common-cause error mode.

^CCM: common-cause error mode.
•^V: rating weight for simulation.

^P: frequency of error occurrence(%).
®C: error correction time(%).

^0: point of error occurrence in time(% of final completion time).

www.manaraa.com

122

Mapping geometrical vector evaluation in hexahedron contours

There are three configurations of hexahedron contours shown in Figures 5.13,

5.14, and 5.15, which present a combined severity profile of common-cause errors

using each of the three factors of the common-cause function. Each common-

cause mode can be evaluated by the calculation of a geometrical vector value from

the geometric origin (F, C, O)=(0, 0, 0). Connections between major reasoning

common-cause modes and minor reasoning modes can be recognized from this con

tour map. From the common-cause function 7]^(0.159, 0.262, 0.707), as given in

Table 5.11, the vector evaluation with a : ̂ : 7=1:1:1 factors is derived as follows:

\/(l X 15.92 + 1 X 26.22 + i x 70.72)

= y(252.81 4- 686.44 4- 4998.49)

= ^(5937.74) = 77.1.

As an example of vector evaluation for the common-cause function with a : /3 :

7=1:1:1 as weight ratings, using values from column VI in Table 5.11, the overall

common-cause function is,

C((/i(77.1), /2(46.2), /3(48.9), /4(52.1), 75(64.5), 76(48.0), 77(32.1), 7g(71.0)),

(fl (55.3), f2(79.2), ̂ 3(51.3), ̂ 4(48.4), ̂ 5(43.3), f6(45.9), f7(61.6), fg(40.3), ̂ 9(38.6)),

(fîl(49.9),B2(67.4),53(93.2),B4(55.7))).

By different emphasis or weighting on the evaluation factors, a different orientation

stress for representing development cost or effort, frequency of error occurrence, error

correction time, and point of error occurrence time, using evaluation by geometric

www.manaraa.com

123

Figure 5.13: Identification of Common-Cause Error Mode: Geometric Configuration

www.manaraa.com

124

P7
P2

PS-

Figure 5.14: Pattern Recognition of Common-Cause Error Mode: Geometric Con
figuration

www.manaraa.com

125

B4 B3
B2

Figure 5.15: Behavior Domain of Common-Cause Error Mode: Geometric Configu
ration

www.manaraa.com

126

vector can be calculated to produce varying shapes. Thus, the figure of hexahedron

can be changed with different unit values on each of the three axes. Such simulation

has shown trends of differences in identification modes among different ratings, the

major reasoning common-cause error modes being I.l, 1.8, and 1.5. In pattern recog

nition of the common-cause error mode, the same trend results with major reasoning

patterns, P.2, P.7, and P.l in simulation VI, V2, V3, V5, V6, but different order

results with P.2, PI, P.7 in V7 and V8. In simulation V4(a : /3 : 7=3:2:1), the major

order of important reasoning pattern modes in common-cause error is P.2, P.l, and

P.3. In the behavior domain common-cause error mode, the same result occurred

with major reasoning .behavior domain B.3, B.2, appearing in every simulation ex

cept V2 which produced a different order of major reasoning behavior domain modes

with B.3, B.4, and B.2.

Historical common-cause error recovery time zone

Points of common-cause error occurrence in time are shown in Figures 5.16, 5.17,

and 5.18. Three time zones are shown; the initial time zone, the intermediate time

zone, and the final time zone. Each level of recovery time zone affects the cost/effort

of software development. In the final error recovery time zone, very expensive costs

of development and error recovery occur. These involve I.l and 1.8 in the mode,

P.2 and P.7 in the Pj mode, and B.3 and B.4 in the Bj. mode. In the intermediate

error recovery time zone, it involves 1.4 and 1.5 in the mode, P.l, P.3, P.4 and P.6

in the Pj mode, B.2 in the Bf. mode. In the initial error recovery time zone, the

most economical cost related error recovery time zone, it involves 1.2, 1.3, 1.6 and 1.7

in the /j mode, P.5, P.8 and P.9 in the Pj mode, B.l in the Bj, mode.

www.manaraa.com

COMMON-CAUSE FAILURE - IDENTIFICATION OF COMMON-CAUSE ERROR

91P4 - EXPERT LEVEL

P IDEM

I . 1

1 . 2

1.3

1.4

1.5

I.S

1.7

1 . 8

10 15 20 25 30 35 40 45 50 55 60 65 70

PC OC Sum i 4
Initial "Final

Intermediate

PC_OC
Sum

70.70000

41.60000

44.10000

50.90000

61.30000

45.00000

31.20000

68.70000

- Time Zone -

Figure 5.16: Identification of Common-Cause Error Mode: Recovery Time Zone
(Units: portion (%) of occurrence time.)

www.manaraa.com

COMMON-CAUSE FAILURE - PATTERN RECOGNITION ERROR MODE

91P4 - EXPERT LEVEL

R_PAT

P. 1

P.2

P.3

P.4

P.5

P.S

P.7

P.3

P.9

10 15 20 25 30 35 40 45

PC OC Sum

50 55 so

Initial Final
Intermediate

- Time Zone -

PC_OC
Sum

48.60000

55.90000

47.60000

47.. 90000

42.70000

45.70000

60.60000

39.70000

37.90000

to
00

Figure 5.17: Pattern Recognition of Common-Cause Error Mode: Recovery Time
Zone (Units: portion (%) of occurrence time.)

www.manaraa.com

B_DOM

B. 1

B.2

8.3

8.4

COMMON-CAUSE FAILURE - BEHAVIOR DOMAIN ERROR MODE

91P4 - EXPERT LEVEL

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

PC OC Sum . .1.
Initiai ^ I^Final'

Intermediate

- Time Zone -

PC_OC
Sum

47. 10000

49.20000

53.50000

55.30000
ts3 CO

Figure 5.18: Behavior Domain of Common-Cause Error Mode: Recovery Time Zone
(Units: portion (%) of occurrence time.)

www.manaraa.com

130

Transition relationship diagram and grouping of major common-cause fac

tors

Figure 5.19 shows the transition relationships among different common-cause

function modes, and Table 5.12, Table 5.13, and Table 5.14 show the relative

transition frequencies among common-cause error modes. Common-cause properties

can be grouped according to their analogical characteristics with human behavioral

aspects. There are four groups of common-cause factors, Group 1 of skill-based

Table 5.12: Frequency of Transition Load and Relationship between and Pj " ^

COM LI 1.2 1.3 1.4 1.5 1.6 L7 1.8 TOTAL AVG
P.l 18 4 5 5 1 11 11 0 55 6.9
P.2 31 28 6 7 11 3 1 . 24 111 13.9
P.3 2 12 33 1 0 4 4 7 63 7.9
P.4 0 1 0 0 6 6 0 1 14 1.8
P.5 0 3 8 4 1 2 1 0 19 2.4
P.6 0 4 2 1 0 0 0 0 7 0.9
P.7 0 0 0 8 17 0 0 0 25 3.1
P.8 2 3 10 1 0 0 3 0 19 2.4
P.9 0 0 0 0 0 6 4 2 12 1.5
TOTAL 53 55 64 27 36 32 24 34 325 .
AVG 5.9 6.1 7.1 3.0 4.0 3.6 2.7 3.8

identification of common-cause error mode, Pj: pattern recognition of

common-cause error mode.

^TOTAL: total frequency of error occurrence in each common-cause error mode,
AVG: average frequency of error occurrence in each common-cause error mode.

behavior error domain, Group 2 of rule-based behavior error domain. Group 3 of

knowledge-based behavior error domain, and Group 4 of model-based behavior error

domain. The heavy lines indicated more frequent transition each other, that is, more

strong relationship, than the light lines. The major transit relationship group is

www.manaraa.com

131

GRDUP-l

GROUP

ROUP

R0UP-/4

Figure 5.19; Transitions Relationship Diagram and Grouping of Common-cause Er
ror Modes

www.manaraa.com

132

Table 5.13; Frequency of Transition Load and Relationship between and ^ ^

COM LI L2 L3 1.4 1.5 L6 L7 L8 TOTAL AVG
B.l: 0 9 36 3 0 0 7 0 55 6.9
B.2: 1 25 24 10 22 23 5 13 123 15.4
B.3: 48 21 5 13 12 9 11 20 139 17.4
B.4: 4 0 0 0 1 0 1 3 9 1.1
TOTAL 53 55 65 26 35 32 24 36 326 .
AVG 6.6 6.9 8.1 3.3 4.4 4.0 3.0 4.5 • •

identification of common-cause error mode, Bj,: behavior domain of common-
cause error mode.

^TOTAL: total frequency of error occurrence in each common-cause error mode,
AVG: average frequency of error occurrence in each common-cause error mode.

1.3, P.3 and P.8 in B.l Group 1; 1.2, 1.5, 1.6, P.4, P.5, P.7 and P.9 in B.2 Group 2;

and I.l, 1.4, 1.7, 1.8, P.l and P.2 in B.3 Group 3. The minor transit relationship

group is 1.7 and P.5 in B.l Group 1; 1.3, 1.4, 1.8, P.l, P.2, P.3 and P.6 in B.2 Group

2; 1.2, 1.5, 1.6, P.7 and P.9 in B.3 Group 3; and I.l, 1.8, P.2 and P.9 in B.4 Group

4. Each group has unique characteristics and error symptoms in various aspects of

human behavior domain properties which were explained in the previous chapter.

Correlation and regression analysis

Correlation analysis measures the strength of the linear relationship between

two variables such as frequency and correction time, correction time and point of

occurrence in time, or frequency and point of occurrence in time. Table 5.15 indicates

the extent to which these correlate with each other. A positive value of the

Pearson correlation coefficient indicates more correlation between two variables. A

negative value indicates less correlation. From Table 5.15, programming experience

www.manaraa.com

133

Table 5.14: Frequency of Transition Load and Relationship between Pj and

CCM P.l P.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 TOTAL AVG
B.l: 0 0 34 0 7 0 0 15 0 56 6.2
B.2: 20 21 25 13 13 6 16 2 7 123 13.7
B.3: 35 87 4 2 0 1 9 2 4 144 16.0
B.4; 0 5 0 0 0 0 1 0 3 9 1.0
TOTAL 55 113 63 15 20 . 7 26 19 14 332 .
AVG 13.8 28.3 15.8 3.8 5.0 1.8 6.5 4.8 3.5 • •

^Pj- pattern recognition of common-cause error mode, behavior domain of

common-cause error mode.

^TOTAL; total frequency of error occurrence in each common-cause error mode,
AVG: average frequency of error occurrence in each common-cause error mode.

had a negative influence in the overall correlation value. This means that a more

experienced programmer had a better performance in the programming task with

less frequent error, and less time taken in programming design and error correction.

More spent time in the design phase resulted in a lower frequency of error occurrence

during the computing phase.

The hypothesis in this experiment, that there were no significant differences in

common-cause error properties among different categorical conditions such as specifi

cation requirements, programming languages, and subject expertise levels, was tested

according to F statistics using the SAS ANOVA variance analysis test. Using

factorial experimental analysis^, there is no significant difference in frequency as a

dependent variable (see Table 5.16) for three independent variables involving two lev

els for each variable. The probabilities values associated with the F value are 0.9770

for requirement, 0.3085 for expert level, and 0.9770 for programming language. No

^ In a factorial design, the effects of different factors are considered simultaneously.

www.manaraa.com

134

Table 5.15: Pearson Correlation Coefficients / Prob > | R | under HQ: Rho=0 / n
= 10

. Exp° Freq^ Ct-T^ Com-T^ Sol-T® Des-T-/ Tot-T^
Exp 1.0000 -0.3741 -0.6512 -0.6656 -0.7483 -0.7947 -0.8030

0.0 0.287 0.041 0.036 0.013 0.006 0.005
Freq -0.3741 1.0000 0.5295 0.6553 0.3971 0.1006 0.5184

0.287 0.0 0.116 0.040 0.256 0.782 0.125
CT-T -0.6512 0.5295 1.0000 0.9090 0.8628 0.7019 0.9482
. 0.041 0.116 0.0 0.000 0.001 0.024 0.000
Com-T -0.6656 0.6553 0.9090 1.0000 0.7409 0.5492 0.9400
. 0.036 0.040 0.000 0.0 0.014 0.100 0.000
Sol-T -0.7483 0.3971 0.8628 0.7409 1.0000 0.7460 0.8728

0.013 0.256 0.001 0.014 0.0 0.013 0.001
Des-T -0.7947 0.1006 0.7019 0.5492 0.7460 1.0000 0.7938

0.006 0.782 0.024 0.100 0.013 0.0 0.006
Tot.-T -0.8030 0.5184 0.9482 0.9400 0.8728 0.7938 1.0000

0.005 0.125 0.000 0.000 0.001 0.006 0.0

®Exp: programming experience.

^Freq: frequency of common-cause error mode.
^Ct-T: correction time of error.

^Com-T: computing time of program.
®Sol-T: problem solving time.

^Des-T: program design time.
^Tot-T: total spent time.

www.manaraa.com

135

Table 5.16: ANOVA Test for Variance Analysis (Model: Frequency = Requirement
Level Language; Dependent Variable: Frequency)

Source D.F« S.S^ M.S^ pd Pr > F^
Model 3 137.1000 45.7000 0.41 0.7499
Error 6 663.8000 110.6333
Corrected total 9 800.9000 . .

R.S^ Root MSE^ Freq Mean
. 0.1712 32.7671 10.5182 . 32.1000
Source D.F Anova S.S M.S F Pr > F
Requirement 1 0.1000 0.1000 0.00 0.9770
Subject Level 1 136.9000 136.9000 1.24 0.3085
Language 1 0.1000 0.1000 0.00 0.9770

"D.F: degree of freedom.

^S.S: the sum of squares.
"^M.S: mean square.

^F: the F value for testing hypothesis that the group means for that effect are
equal.

^Pr > F: the significant probability value associated with the F value.
R.Square: measures how much variation in the dependent variable.

^C.V: coefficient of variation.

^Root MSB: estimates the standard deviation of the dependent variable.

www.manaraa.com

136

Table 5.17: ANOVA Test for Variance Analysis (Model: CorrectionTime = Require
ment Level Language; Dependent Variable: CorrectionTime)

Source D.F« S.S* NLSf pd Fr> F^
Model 3 1509.1000 503.0333 0.76 0.5555
Error 6 3963.5000 660.5833
Corrected total 9 5472.6000 . . .

ii.s/ C.V9 Root MSE^ Freq Mean
. 0.2758 56.7369 25.7018 . 45.3000
Source D.F Anova S.S M.S F Pr> F
Requirement 1 476.1000 476.1000 0.72 0.4285
Subject Level 1 980.1000 980.1000 1.48 0.2689
Language 1 52.9000 52.9000 0.08 0.7867

®D.F: degree of freedom.

^S.S: the sum of squares.
^M.S: mean square.

^F: the F value for testing hypothesis that the group means for that effect are
equal.

^Pr > F: the significant probability value associated with the F value.

R.Square: measures how much variation in the dependent variable.
^C.V: coefficient of variation.

^Root MSE: estimates the standard deviation of the dependent variable.

www.manaraa.com

137

significant difference occurred for correction time as a dependent variable associated

with the F value probabilities, 0.4285 for requirement, 0.2689 for expert level, and

0.7867 for language (Table 5.17). There is only a significant difference in the expert

level with computing time as a dependent variable. The significant probability val

ues associated with F value are 0.3705 for requirement, 0.0400 for expert level, and

0.3617 for programming language (Table 5.18). Regression analysis typically is the

Table 5.18: ANOVA Test for Variance Analysis (Model: ComputingTime = Re
quirement Level Language; Dependent Variable: ComputingTime)

Source D.po S.S& M.S^ pd Pr > F®
Model 3 231240.4000 77080.1333 2.91 0.1230
Error 6 158881.6000 26480.2666
Corrected total 9 390122.0000 « . .

R.S/ C.V9 Root MSE'^ Freq Mean
. 0.5927 31.1143 162.7276 . 523.0000
Source D.F Anova S.S M.S F Pr> F
Requirement 1 24800.4000 24800.4000 0.94 0.3705
Subject Level 1 180633.6000 180633.6000 6.82 0.0400
Language 1 25806.4000 25806.4000 0.97 0.3617

®D.F: degree of freedom.

^S.S: the sum of squares.
'^M.S: mean square.

^F: the F value for testing hypothesis that the group means for that effect are
equal.

^Pr > F : the significant probability value associated with the F value.

^R.Square: measures how much variation in the dependent variable.
^C.V: coefficient of variation.

^Root MSE: estimates the standard deviation of the dependent variable.

analysis of the relationship between one dependent variable and a set of independent

variables to find out how well one can predict values of the dependent variable using

least-squares estimates and error sum of squares based on the independent variables.

www.manaraa.com

138

For an estimate of linear regression equation of the straight line that best fits the

Table 5.19: Regression Analysis (Dependent Variable: Frequency)

Source D.F« REf S.Ef Pr > |r|c
Intercept 1 22.1197 6.2585 3.53 0.0077
Correction Time 1 0.0391 0.0221 1.77 0.1155
Intercept 1 16.5718 6.7649 2.45 0.0400
Computing Time 1 0.0297 0.0121 2.45 0.0397
Intercept 1 30.5530 6.2605 4^8 0.0012
Design Time 1 0.0091 0.0318 0.29 0.7822

°D.F: degree of freedom.

^P.E: parameter estimate.
•^S.E: standard error.

^T: T for HQ : parameter=0, the t test that parameter is zero.
^Pr > |T|: the probability that a t statistic would obtain a greater absolute value

than that observed given that the true parameter is zero.

points between two variables involving frequency, correction time, computing time,

and design time, the Table 5.19 has the coefficients and intercepts for the linear

regression equation describing frequency as a dependent variable:

F = 0.0391 -Q+ 22.1197,

where F: frequency, CF correction time(Units: time in min.);

F = 0.0297 • MT + 16.5718,

where F: frequency, MF. computing time(Units: time in min.);

F = 0.0091 • DT + 30.5530,

where F\ frquency, DF. design time(Units: time in min.).

From the Table 5.20, the linear regression line of design time as a dependent variable

www.manaraa.com

139

(correlation coefficient: 0.7019) is:

Dt = 0.5727 • Ct + 23.7929,

where Df. design time, Cf. correction time(Units: time in min.).

The acceptance confidence probabilities for the best fit regression line between the

variables are significantly enough with t test statistics except design time.

Table 5.20: Regression Analysis (Dependent Variable: Design Time) ^

Source D.Fk P.E^ S.Ed rpe Pr > \T\i
Intercept 1 23.7929 58.0672 0.410 0.6927
Correction Time 1 0.5727 0.2055 2.787 0.0237

®DF: Degree of Freedom; PE: Parameter Estimate ; SE: Standard Error; T: T for
HQ: parameter=0, the t test that parameter is zero; Pr > |r|: the probability that
a t statistic would obtain a greater absolute value than that observed given that the
true parameter is zero.

^D.F: degree of freedom.
^P.E: parameter estimate.

^S.E: standard error.
^T: T for HQ: parameter=0, the t test that parameter is zero.

^Pr > |r|: the probability that a t statistic would obtain a greater absolute value
than that observed given that the true parameter is zero.

General observations and causal factors of common-cause error domain in

human-software interaction

General observations and some symptoms of common-cause error were discov

ered during the experiment.

(1) Pre-existing knowledge was a major diagnostic symptom for completing the pro

gramming task. Subjects solved the problem, designed the requirements, and com

www.manaraa.com

140

puted using incorrect or mis-informed knowledge and methodologies. These symp

toms had a lower frequency but required the longest correction time.

(2) Human memory, recognition, and availability were associated with some effects in

the rule-based behavior domain. Logical, functional, syntax, design, and complexity

error problems were examples of these symptoms which occurred with intermediate

frequency and required a moderate amount of correction time. Within this category,

the symptoms were related to pattern matching, stereotypical recognition, subject

working memory and availability to take more logical rule-based problems.

(3) Human attention and perceptual ability can be affected by subject sensory-

motor variability, recent physical and psychological events, and external environ

ments. These symptoms constituted the minor reasons for common-cause error do

main with greater frequency but the least correction time. They were identified as

clerical, semantic, syntax, and some operation errors associated with skill-based be

havior domain.

(4) Incomplete of knowledge was a major common-cause in the area of system oper

ation, programming language, design method, and requirements specification. This

causal factor was associated with the knowledge-based and rule-based behavior do

main groups.

(5) Uncertainty of information was associated with knowledge-based, model-based,

and skill-based behavior domain groups. This was a causal factor in the following ar

eas: understanding and design of requirements specification, knowledge background

of hardware and operating system, internal and external situation of environment,

conditional factors in environment of system and subject.

(6) There was no significant difference in common-cause error properties between the

www.manaraa.com

141

two levels among three of the subject factors: C and Fortran for programming lan

guage, A (dynamic programming assignment) and B (inventory control system) for

requirements specification, and Level 1 (less programming expertise level) and Level

2 (more programming expertise level) for programming expertise level, the exception

bein computing time in level of expertise.

(7) The major common-cause error modes arose from system design and require

ment error, output and output formatting error, and program logic error. Design

deficiency, logical formulation of the problem, and knowledge deficiency were major

categories in pattern recognition in the common-cause error mode. The knowledge-

based behavior domain and rule-based behavior domain were significantly important

factors in common-cause error behavior domain.

(8) The knowledge-based behavior error domain was associated with the most signif

icant error mode group in each of the common-cause function factors which involved

identification and pattern recognition error modes. This is respectively requested

the error causal prevention for knowledge-based behavior error domain including the

following symptom factors: task identification, domain principle, object orientation,

concurrent and intelligent design, integration and optimization method. Character

istics of these causal factors are human variability, selectivity, adaptation, working

memory limitation, errors in a causal structure, availability, matching bias revisited,

need for human decision making, incomplete knowledge, and uncertainty of informa

tion.

(9) Frequency and correction time in each common-cause error mode have a more

consistent trend than point of occurrence in time among different error modes and

over different task criteria.

www.manaraa.com

142

Common-Cause Error Control Mechanism and Prevention

It is said that human-software interaction is more difficult to apply at higher

levels, simply because great system complexity and flexibility imply more choices

for system designers. It takes longer and is more difficult to analyze the system.

Since there is a trend toward more sophisticated technology where the human is a

programmer and a monitor of system behavior rather than an active controller, more

human factors efforts and system improvements will be directed toward problems at

this level.

With the analysis of experimental data, characteristics and properties of common-

cause human error can be defined tentatively in the human behavior domain in

human-software interaction, and the human error control mechanism can be re

designed.

Error control mechanism and environment

Figure 5.20 schematically represents a feed back process from a common-cause

model to an error control scheme in human-software interaction. The experimental

model for defining the common-cause human domain error in identification, pattern

recognition, and behavior domain of common-cause proceeds to a 'black box' with

the result of common-cause analysis. Then, with the representation of common-cause

error analysis, knowledge processing and information processing of human-software

interaction, it provides all information and guide lines for the new intelligent design

which will be supported by concurrent design orientation and a model-based design

method. Figure 5.21 shows environmental phenomena and infiuences in human-

software interaction. This schematic frame-work explains how major common-cause

www.manaraa.com

143

HUMAN-SOFTWARE COMMON-CAUSE COMMON-CAUSE KNOWLEDGE REPRESENTATION SYSTEM REDESIGN

INTERACTIONS PATTERN FUNCTION

RECOGNITION

INFORMATION PROCESSING PARADIGM

HAPPING

HEXAHEDRON

CONTOUR

HUMAN-SOFTWARE

INFORMATION PROCESSING

KNOVLEDGE-BASED

ENGINEERING

HUMAN-SOFTWARE INTERACTION

CONCURRENT DESIGN

MODEL-BASED DESIGN

KNOWLEDGE-ORIENTED

SYSTEMS INTERACTION

Figure 5.20: Common-Cause Error Control Mechanism

www.manaraa.com

144

error domains relate to human-software interaction and system processing. In this

error control environment, the system environment of human-software interaction

including social problems, knowledge back ground, information system, situation

motivation, and physical climate affect the human-software function. These factors

are directly or indirectly, involved with system goal formation, knowledge orientation,

human-software information processing, psychological mechanisms and physiological

functioning for software task output.

Allocation of function and system interaction

Allocation of function is the process whereby the designer decides which tasks

or functions should be allocated to the software subsystem and which to the human

subsystem. The reliability of software can be improved less expensively than can the

reliability of the human simply by putting extra components in parallel. Software can

be changed fairly easily. The human was allocated some functions in older systems

to pèrinit flexibility for changes. Then, this flexibility could be achieved through

software modification, making it practical for the designer to allocate even more

functions to the software system. Therefore, the major decision in allocation of

function involves checking that the human is left with a reasonable set of tasks. These

tasks should neither overload nor under-load, considering the operators' capabilities.

In order to accomplish system goals in human-software interaction, designers

must proceed systematically with seven relevant questions. These are:

(1) What system inputs and outputs must be provided to satisfy goals in human-

software interaction?

(2) What operations functions are required to produce system outputs?

www.manaraa.com

145

Influence from
System Environnent: Hunon-Soriwore Functions

Objective and Policy
Fornatlon

Social Environneni

System Value Feotures

Criteria &
Preferences

Knowledges, ("correct, Hisn
OrientatkiAX /

Structural Ree

]dentiAcat!oi\ Adaptation Incomplete, Inert

Memory Limitation Knowledge

Concurrent
Design

Output
Human-Sortwbi;e Inadequ^
•matlon Proce^ing

Symbolic Information Inaccurate

Resource Dato, Requirements Information
Software Task

Mental
Resources

Stress Emotional, Affective PlStracllOllS, ^Xcy.hnln,,,r>

Motivational Factor^\Hechanlsmy Situation Features

Physiological Inoppropriate Cliqa^
Physiological

N.Function/ Malfunction & Stressors

Figure 5.21: Common-Cause Error Control Environment and Human-Software In
teraction

www.manaraa.com

146

(3) What functions should the human perform within the human-software system?

(4) What are the training and skill requirements of human subjects?

(5) Are the tasks demanded by the system compatible with human capabilities?

(6) What interfaces does the human need to perform the job between the human and

software systems?

(7) Does the human help or hurt software operation systems and vice versa?

Design analysis in human-software interaction

Common-cause design error patterns are due to inadequate design by the pro

gram designer. The three types of errors are the failure to implement human needs

in the design, assigning an inappropriate function to a person, and failure to ensure

the effectiveness of human-software interaction. Factors such as too much hastiness

in the design effort, inclination of the designer to a particular design method and

poor analysis of the requirement specifications needs are the causes of design errors.

Design principles for improving software task productivity in human-software

interaction are as follows;

(1) Provide feedback error control mechanism with considerations of their environ

ment;

(2) Be consistent in its system design and task completion;

(3) Minimize human memory demands by the information from human-software in

formation processing;

(4) Keep the program simple, and not too much complexity;

(5) Match the program to software users' skill level;

(6) Sustain human, users or operators, orientation.

www.manaraa.com

147

Knowledge-based human-software interaction and prevention

Interface software that can adapt to the current operator and the current context

is a long-term research goal of the adaptive interface project. An adaptive human-

software interface needs to include a knowledge-base that encompasses four domains;

knowledge of the current human operator, knowledge of the human-software inter

action scheme, knowledge of the operation task, and knowledge of the underlying

human-software interaction system.

There are at least three major factors underlying the inadequacy of HSI^ tech

nology [80].

(1) Interface software is generally not viewed as part of the system but rather as a

software package between the system and the operator [77].

(2) The design of effective interfaces is a difficult problem with sparse theoretical

foundations [67].

(3) Software engineering principles are generally not given significant consideration

in designing interfaces. Human operator specifications using the information hiding

principle[83] in an abstract interface [61] need to be incorporated in the design of

human-software interaction.

Advantages and disadvantages to adaptive human-software interfaces include:

Advantages:

(1) A system that dynamically allocates operations must be able to adapt to indi

vidual operators. It is imperative to have information specific to the current human

operator for an optimal allocation process.

(2) Many times operators may not have the necessary information or expertise to

^HSI - Human-Software Interfaces.

www.manaraa.com

148

modify their behavior.

(3) An adaptive human-software interface system increases operator proficiency with

a new system and prevents frustration with an overly simple system.

Disadvantages:

(1) The operator may not be able to develop a coherent model of the human-software

system if the system is frequently changing.

(2) The loss of control or the feeling of loss of control that the operator may experi

ence.

(3) An adaptive interfaces also has an increase in implementation complexities and

costs.

Control of common-cause factors of incompleteness and uncertainty

There are approaches and requirements for controlling the common-cause factors

of incompleteness and uncertainty in aspects of the knowledge-based system including

fuzzy set application. Software engineers are faced with information and knowledge

simultaneously incomplete and uncertainties in human-software interaction. Since

the initial phase of software system development, it became evident that these rea

soning factors could not be neglected because they are strongly related to the way in

which the common-cause error problem is controlled by a software system designer.

There are two aspects of data from a common-cause error experiment in human-

software interaction: incompleteness of information/knowledge, and uncertainty of

information/knowlwdge [79].

(1) Incompleteness of information/knowledge was dealt with using some theories

and techniques such as non-monotonic logics [66], truth maintenance system [64],

www.manaraa.com

149

and reason maintenance [15]. Some causal factors of common-cause domain errors

arise from incompleteness of information/knowledge in the area of; program source

language, operating software system, background knowledge for requirements, and

design methodology.

(2) Uncertainty of information/knowledge has been studied using techniques based on

probability, subjective probability, evidence theory, fuzzy sets and possibility theory

[23] [122]. Some causal factors of common-cause domain errors arise from uncertainty

of information/knowledge in the areas of requirement of specifications, hardware sys

tems, and environmental factors.

A set of requirements is needed in order to have a plausible technique of coping

with uncertainty of information/knowledge. A list of requirements has been formu

lated as follows [87]:

(1) An inference should not depend on any assumptions about the probability distri

butions of the propositions,

(2) It should be possible to assert common relationships between propositions when

the relationships are indeed known,

(3) It should be possible to posit information about any set of propositions and ob

serve the consequences for the whole system,

(4) If the information provided to the system is inconsistent, this fact should be

made obvious along with some notion of alternative ways that the information could

be made consistent.

The list of requirements has been extended [66] and arranged into three cate

gories bearing in mind distinct layers of the system, namely representation, inference,

and control. The major requirements consider the following facts.

www.manaraa.com

150

(1) The inference mechanisms should be logically tied to mechanisms initialized previ

ously for knowledge acquisition. Thus, the knowledge-base is consistent and preserves

properties within the framework of a specified formalism. The same formalism should

form a basis for inference layer.

(2) A performance of the knowledge-base in the sense of its consistency and complete

ness should be taken into account by any inference procedure. The procedure should

return not only a result of inference but also indicate the degree of its precision.

Improving software productivity

There is a general comment for software productivity improvement from the ex

periment in human-software interaction.

(1) Getting the best strategies from programmer: staffing, facilities, project goals,

and management;

(2) Making policy more efficient: operating systems, environmental conditions, hard

ware work stations, office automation;

(3) Training for the intelligent and concurrent design methodologies;

(4) Consulting for appropriate requirements and matching to appropriate specifica

tion;

(5) Eliminate factors: biased orientations, pre-existing knowledge/information, auto

mated documentation, quality assurance automated programming;

(6) Eliminate rework: front-end aids, knowledge-based software task assistant, infor

mation hiding, modern programming practices, incremental development;

(7) Building simpler products: process models, rapid prototype

(8) Reuse components: component libraries, application generators, fourth-generation

www.manaraa.com

151

languages, feedback function from post project.

www.manaraa.com

152

CHAPTER 6. CONCLUSION

Summary

The overall objectives of this research were to develop a cognitive paradigm in

cluding a new model of common cause human-domain error and a common cause error

function to define internal common cause human-domain errors and also to determine

how to control and prevent common cause errors in human-software interaction.

A laboratory experiment was performed to analyze the common causes of human

error in software development and to identify software design factors contributing to

the common cause effects in common cause failure redundancy. Three pilot projects

with 46 subjects representing three skill levels were used to establish the design for

a cognitive experiment. Following this study, a main experiment using ten pro

gramming experts was conducted in order to define a new cognitive paradigm, in

the aspects of identification, pattern recognition, and behavior domain for internal

human domain common-cause errors.

Main experimental results consisted of a 32.1 average (9.4 standard deviation)

total common-cause error frequency, and 255.3 minutes average total error correction

time during 523 minutes total computing time per each version of software devel

opment. Time spent in understanding and problem solving was 109 minutes, and

design time for programming was 170 minutes. In the five categories of subject eval

www.manaraa.com

153

uation factors, average rating from experts' responses are (a) programming experience

(23%), (b) knowledge background (21%), (c) intelligence (23%), (d) experiment at

titude (18%), (e) work environmental conditions (15%). With the error occurrence

frequency factor, the major reasoning categories in each common-cause error mode

are: in the identification mode, 1.3 (19.4%), 1.2 (16.2%), and I.l (15.9%); in the pat

tern recognition mode, P.2 (33.7%), P.3 (18.0%), and P.l (15.7%); in the behavior

domain mode, B.3 (43.6%) and B.2 (36.5%). When the error correction time factor

is applied, I.l (26.2%), 1.5 (16.6%), and 1.8 (13.9%) in the mode; P.2 (44.8%) and

P.l (21.2%) in the Pj mode; and B.3 (62.7%) and B.2 (28.1%) in the Bf, mode.

Each value listed in the common-cause function parameters can be produced by

three factors, j Cj j 0^ j Such simulation has shown trends of differences

in identification modes among different ratings, the major reasoning common-cause

error modes being I.l, 1.8, and 1.5. In pattern recognition of the common-cause error

mode, the same trend results with major reasoning patterns, P.2, P.7, and P.l in

simulation VI, V2, V3, V5, V6, but different order results with P.2, PI, P.7 in V7

and V8.

Each level of recovery time zone affects the cost/effort of software development.

In the final error recovery time zone, very expensive costs of development and error

recovery occur. These involve I.l and 1.8 in the mode, P.2 and P.7 in the Pj mode,

and B.3 and B.4 in the Bf, mode. In the intermediate error recovery time zone, it

involves 1.4 and 1.5 in the mode, P.l, P.3, P.4 and P.6 in the Pj mode, B.2 in the

Bj^ mode. In the initial error recovery time zone, the most economical cost related

error recovery time zone, it involves 1.2, 1.3, 1.6 and 1.7 in the /j mode, P.5, P.8 and

P.9 in the Pj mode, B.l in the Bj, mode. The major transit relationship group is

www.manaraa.com

154

1.3, P.3 and P.8 in B.l Group 1; 1.2, 1.5, 1.6, P.4, P.5, P.7 and P.9 in B.2 Group 2;

and I.l, 1.4, 1.7, 1.8, P.l and P.2 in B.3 Group 3 from the transit relation diagram

analysis.

From correlation analysis, more experienced programmers had better perfor

mance in programming tasks with less frequent error, and less amount of time in

programming design and error correction. More spent time in design phase resulted

in a lower frequency of error occurrence during the computing phase. There was no

significant difference in subject task performances among the three categorical fac

tors: requirements, languages, and expert levels, except in computing time for both

subject expertise levels using SAS ANOVA variance analysis. Also linear regression

lines provided for the best fits estimate points between two variables.

Finally, the characteristics and the properties of common-cause failure modes in

human-software interaction were determined by the analysis of experimental data col

lected on the ten expert subjects and compared with data from each of the categorical

conditions in various aspects of the human-software information processing scheme,

knowledge-based engineering approach, and concurrent/intelligent design concepts.

Some observations and symptoms were analyzed from the results of the common-cause

error domain in human-software interaction. First, human mind-robustness based on

his/her knowledge obtained before was a major diagnostic symptom for complet

ing the task as related to the model-based and knowledge-based behavior domain

category. Secondly, human memory, recognition, and availability were associated

with some of the effects in the rule-based behavior domain. Third, human attention

and perceptual ability could be affected by subject sensory-motor variability, recent

physical and psychological events, and external environments. Fourth, incomplete

www.manaraa.com

155

of knowledge was a major common-cause in the area of system operation, program

ming language, design method, and requirements specification. Fifth, uncertainty

of information was associated with knowledge-based, model-based, and skill-based

behavior domain groups. Sixth, there was no significant difference in common-cause

error properties between the two levels among three of the subject factors: languages,

requirements, and expert levels. Seventh, the major common-cause error modes arose

from system design and requirement error, output and output formatting error, and

program logic error. Design deficiency, logical formulation of the problem, and knowl

edge deficiency were major categories in pattern recognition in the common-cause

error mode. The knowledge-based behavior domain and rule-based behavior domain

were significantly important factors in common-cause error behavior domain. Eighth,

the knowledge-based behavior error domain was associated with the most significant

error mode group in each of the common-cause function factors which involved identi

fication and pattern recognition error modes. This is respectively requested the error

causal prevention for knowledge-based behavior error domain. Ninth, frequency and

correction time have a more consistent trend than point of occurrence in time among

different error modes and over different task criteria.

Limitations and assumptions of this experiment are as follows;

(1) There was an assumption that all subject should be randomly selected.

(2) The software development project had some limitations with its scale: (a) no. of

subjects (ten programming experts); (b) program assignment size (300-400 lines).

(3) There were limited levels for independent variables: (a) two programming expert

levels (level-1, level-2); (b) two programming languages (C, Fortran); (c) two require

ments specification (A, B).

www.manaraa.com

156

(4) There was an assumption of no difference in performance due to gender (8 males,

2 females), or national source of undergraduate education (3 U.S./American, 1 Turk

ish, 6 Asian/Indian).

(5) Hardware system limitation (only a VINCENT work station used). Software op

erating system limitation (only the VINCENT network ULTRIX was used).

Conclusions

Conclusions derived from this research are:

(1) Two major common-cause reasoning groups exist in human-software interaction:

(a) a major group consisting of knowledge-based behavior related errors indicated by

design and knowledge deficiencies; (b) another major group consisting of rule-based

behavior related errors indicated by logical errors, functional deficiencies, and system

complexity.

(2) In training education sessions, consideration should be given to common-cause

reasoning characteristics to eliminate the common-cause human domain error in

human-software interaction. These characteristics include: (a) human mind-robustness

(pre-existing incorrect knowledge and information); (b) pattern recognition in human

memory; (c) human attention and perceptual ability; (d) incompleteness of knowl

edge and information uncertainty.

(3) Design with intelligence and concurrence by the knowledge-based processing: (a)

knowledge acquisitions; (b) knowledge representation; (c) knowledge utilization.

Future research should be directed toward:

(1) Studies of common-cause error in system operation.

(2) Studies of common-cause failure in communication network.

www.manaraa.com

157

(3) Application of fuzzy set theory to pattern recognition.

(4) Knowledge-based application to system operation.

(5) Intelligent and concurrent design properties in software engineering.

(6) Application of quality assurance techniques in the design and testing of human-

software interaction system.

The results and analytical procedures showed during this study were to ana

lyze common-causes of software development related to human error and to identify

software design factors contributing to common types of error occurring in human-

software interaction. Therefore, this can be applied to improving reliability of soft

ware developrnent and to providing guidelines for design of software development.

www.manaraa.com

158

BIBLIOGRAPHY

[1] Alford, M. "SREM at the Age of Eight: the Distributed Computing Design
System." Computer, vol. 18, no. 4, Apr. 1985, pp. 36-46.

[2] Allport, D. A., B. Antonis, and P. Reynolds. "On the Division of Attention: A
Disproof of the Single-Channel Hypothesis." Quarterly Journal of Experimental
Psychology, 1972, 24, pp. 225-235.

[3] American Nuclear Society. "PRA Procedures Guide." NUREG/CR- 0111, 1979.

[4] Anderson, Ronald T., Lewis Neri. Reliability-Centered Maintenance. Elsevier
Applied Science, New York, 1990, pp. 317.

[5] Askren, W. B., T. L. Regulinski. "Quantifying Human Performance for Relia
bility Analysis of Systems." Human Factors, 11, 1969, pp. 393-396.

[6] Bailey, R. W. Human Performance Engineering. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1982.

[7] Beakley, George C., and E. G. Chilton. Introduction to Engineering Design and
Graphics. Macmillan, New York, 1973, pp. 761-763.

[8] Beech, H. R., L. E. Burns, B. F. Sheffield. A Behavioral Approach to the Man
agement of Stress. John Wiley & Sons, Chichester, 1982.

[9] Bell, B. J., A. D. Swain. "A Procedure for Conducting a Human Reliability
Analysis for Nuclear Power Plants." NUREG/CR- 2254, 1981.

[10] Beam, Walter R., J. D. Palmer, A. P. Sage. "Systems Engineering for Soft
ware Productivity." IEEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-17, No.2, March/April 1987.

[11] Boehm, B. W., TRW. "Improving Software Productivity." Computer, Sep. 1987,
pp. 43-57.

www.manaraa.com

159

2] Boehm, B. W. Characteristics of Software Quality. North Holland, New York,
1978.

3] Boehm, Barry. "Software Reliability - Measurement and Management." Abr.
Proc. AIAA Software Management Conf, Los Angeles Sec., June 1976.

.4] Boem, B. W. "Software Engineering." IEEE Trans. Comput., Vol. C-25, No. 12,
1976, pp. 1226-1241.

.5] Bowen, A. L. "Modal Propositional Semantics for Reason Maintenance System."
Proceedings of the 9th Int. Conf. on Artificial Intelligence, LA, CA, 1985.

.6] Bowen, T. P., G. B. Wigle, J. T. Tsai. "Specifications of Software Quality At
tributes." RADC-TR-85-37(3 vol.), Feb. 1985.

[7] Broadbent, D. E. Decision and Stress. Academic Press, New York, 1971.

18] Broadbent, D. E. "Application of Information Theory and Decision Theory to
Human Perception and Reaction." Cybernetics of the Nervous System, Ed. by
N. Wiener &: J. P. Schade , Amsterdam, Elsevier, 1965.

L9] Broadbent, D. E. Perception and Communication. Pergamon, London, 1958.

20] Brooks, Fredrick P. Jr.. The Mythical Man-Month. Addison-Wesley Publishing
Co., Reading, Mass., 1975.

21] .Card, S. K., W. K. English and B. J. Burr. "Evaluation of Mouse, Rate-
Controlled Isometric Joystick, Step Keys and Text Keys for text Selection on a
CRT." Ergonomics, vol. 21, no. 8, 1978, pp. 601-613.

22] Chapannis, A. New Approaches to Safety in Industry. Ed. by W. Johnson, In-
ComTec, London, 1972.

23] Cohen, P. R., and M. R. Grinberg. "A Framework for Heuristic Reasoning about
Uncertainty." Proceedings of the 8th Int. Joint Conf. on Artificial Intelligence,
Karlsruhe, W Germany, 1983, pp. 355-357.

24] Conway, Richard. A Primer on Disciplined Programming Using PL/1, PL/CS,
and PL/CT. Winthrop Publishers, Cambridge, Mass, 1978.

25] Cooper, Thomas, Nancy Wogrin. Rule-Based Programming with 0PS5. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1988, pp. 6-7.

26] Curtis, B. "Human Factors in Software Development." IEEE, Cat. No. EHO
185-9, 1981.

www.manaraa.com

160

[27] Davis, W. S. Information Processing Systems. Addison-Wesley Publishing Com
pany, Manila, PH, 1981.

[28] Dhillon, B. S. Human Reliability: with Human Factors. Pergamon Press, New
York, 1986, pp. 29, 44-60.

[29] Dhillon, B. S. "Fault Tree Analysis." Mechanical Engineer's Handbook, Ed. by
Mayer P. Kutz, Chapter 20, John Wiley & Sons, New York, 1985.

[30] Dhillon, B. S. Reliability Engineering in Systems Design and Operation. Van
Nestrand Reinhold Co., New York, 1983.

[31] Dhillon, B. S., C. Singh. Engineering Reliability: New Technique and Applica
tion. John Wiley & Sons, New York, 1981.

[32] Duncan, J. "Response Selection Rules in Spatial-Choice Reaction Tasks." Ed.
by S. Dornic, Attention and Performance VI, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1977.

[33] Endres, Albert. "An Analysis of Errors and Their Causes in System Programs."
IEEE Transactions on Software Engineering, June 1975, pp. 140-149.

[34] Esogbue, A. 0., and R. C. Elder. "Fuzzy Sets and the Modeling of Physician
Decision Process, Part II: Fuzzy Diagnosis Decision Models." Fuzzy Sets and
Systems, vol 3, 1980, pp. 1-9.

[35] Fitts, P. M., M. I. Posner. Human Performance. Brooks/Cole Publishing Com
pany, Belmont, CA, 1967.

[36] Fitts, P. M., C. M. Seeger. "S-R Compatibility: Spatial Characteristics of Stim
ulus and Response Codes." Journal of Experimental Psychology, 1953, 46, pp.
199-210.

[37] Fraassen, Bas C. Van. "Rational Belief and the Common-Cause Principle."
What? Where? When? Why? Ed. by Robert McLaughlin, D. Reidel Pub
lishing Co., Dordrecht, Holland, 1982, pp. 193-209.

[38] Glymour, Clark. "Causal Inference and Causal Explanation." What? Where?
When? Why? Ed, by Robert McLaughlin, D. Reidel Publishing Co., Dordrecht,
Holland, 1982, pp. 179-191.

[39] Green, A. E., A. J. Bourne. Reliability Technology. John Wiley & Sons, London,
1972, pp. 22.

www.manaraa.com

161

[40] Halstead, Maurice. Elements of Software Science. Elsevier North-Holland Inc.,
New York, 1977.

[41] Harm, 0. J., J. S. Lappin. "Probability, Compatibility; Speed and Accuracy."
Journal of Experimental Psychology, 1973, 100, pp. 416-418.

[42] Harris, Bernard. "Stochastic Models for Common Failures." Reliability and Qual
ity Control, Ed. by A. P. Basu, Elsevier Science Publishers B. V., North-Holland,
1986, pp. 185-200.

[43] Henley, Ernest. J., H. Kumamoto. Designing for Reliability and Safety Control.
Prentice Hall, Inc., Englewood Cliffs, N.J., 1985, pp. 273-275.

[44] Herman, L. M., B. H. Kantowitz. "The Psychological Refractory Period Effect:
Only Half the Double-Stimulation Story?" Psychological Bulletin, 1970, 73, pp.
74-88.

[45] Hick, W. E. "On the Rate of Gain of Information." Quarterly Journal of Exper
imental Psychology, Apr. 1952, pp. 11-26.

[46] Hill, H. C. Information Processing and Computer Programming: An Introduc
tion. Melville Publishing Co., L.A., C.A., 1973.

[47] Hyman, R. "Stimulus Information as a Determinant of Reaction Time." Journal
of Experimental Psychology, 1953, 45, pp. 188-196.

[48] Ingram, Rick E. Information Processing Approaches to Clinical Psychology. Aca
demic Press, Inc., London, 1986

[49] Jones, T. C. Programming Productivity. McGraw-Hill, New York, 1986.

[50] Kahneman, D., P. Slovic, and A. Tversky. Judgement under Uncertainty:
Heuristics and Biases. Cambridge University Press, 1982.

[51] Kantowitz, Barry. H. , and Robert D. Sorkin. Human Factors: Understanding
People-System Relationships. John Wiley & Sons, New York, 1983, pp. 30-59.

[52] Kantowitz, Barry H. "Interfacing Human Information Processing and Engineer
ing Psychology." Human Performance and Productivity, Vol.2: Information Pro
cessing and Decision Making, Ed. by W. C. Howell, E. A. Fleishman, Lawrence
Erlbaum Associations, Publishers, Hillsdale, New Jersey, 1982, pp. 48.

[53] Kantowitz, Barry. H., and J. L. Knight. Testing Tapping Timesharing: II. Au
ditory Secondary Task. Acta Psychologica, 1976, 40, pp. 343-362.

www.manaraa.com

162

[54] King, P. J., and E. H. Mamdani. "The Application of Fuzzy Control Systems to
Industrial Processes." Aotomatica, 13, 1977, pp. 235-242.

[55] Kitahara, Yasusada. Information Network System: Tele- communications in the
21st century. Heinemann Educational Books, London, 1983.

[56] Knight, J. C., and N. G. Leveson. "An Experimental Evaluation of the Assump
tion of Independence in Multi-Version Programming." IEEE Transactions on
Software Engineering, SE-12(1), pp. 96-109.

[57] Konz, S. "Quality Circles: Japanese Success Story." Industrial Engineering, 15,
Oct. 1979, pp. 24-27.

[58] Koriat, A. and S. Lichtenstein. "Reasons for Confidence." Journal of Experi
mental Psychology: Human Learning and Memory, 6, 1980, pp. 107-117.

[59] Lee, K. W., F. A. Tillman, J. J. Higgins. "A Literature Survey of the Human
Reliability Component in a Man-Machine System." IEEE Trans. Reliab., Vol.
37, No. 1, Apr. 1988.

[60] Lehman, J. F. and J. G. Carbonell. Learning the User's Language: A Step To
wards Automated Creation of User Models. Carnegie-Mellon University, Pitts
burgh, PA, 1987.

[61] Liskov, B., and S. Zilles. "Specification Techniques for Data Abstractions." IEEE
Trans. Software Engr., vol. SE-1, no. 1, 1975, pp. 7-19.

[62] Lu, Stephen C. Y. "Knowledge Processing Technology for Simultaneous Engi
neering." CIM Management, Dec. 1990.

[63] Luchins, A. S., E. H. Luchins. "New Experimental Attempts at Preventing Mech
anization in Problem Solving." Journal of General Psychology, 42, 1950, pp.
279-297.

[64] McAllester, D. A. An Outlook on Truth Maintenance. MIT Artificial Intelligence
Laboratory, Cambridge, Mass., 1980.

[65] McCormick, E. J., M. S. Sanders. Human Factors in Engineering and Design.
McGraw-Hill Book Comp., New York, 1982.

[66] McDermott, D. Non-monotonic logic II: Non-monotonic modal theories. J. Assn.
Comp. Machinery 29, 1982, pp. 33-57.

www.manaraa.com

163

[67] Meads, J. "Report on the SIGCHI Workshop on Planning for User Interface
Standards." SIGCHI Bull., vol. 17, no 2, 1985, pp. 11-16.

[68] Meister, D. "Reduction of Human Error." Handbook of Industrial Engineering,
Ed. by G. Salvendy, John Wiley & Sons, New York, 1982, pp. 6.2.1-6.2.9.

[69] Meister, D. Human Factors: Theory and Practice. John Wiley & Sons, New
York, 1976. pp. 11-56.

[70] Meister, D. Human Factors: Theory and Practice. Wiley, New York, 1971.

[71] Meister, D. "Human Factors in Reliability." Reliability Handbook, Ed. by W. G.
Ireso, McGraw- Hill, New York, 1966, pp. 12.2-12.37.

[72] Meister, D. "The Problem of Human-initiated Failures." Proceedings of the
Eighth National Symposium on Reliability and Quality Control, IEEE, New York,
1962, pp. 234-239.

[73] Melliar-Smith, P.M., B. Randell. "Software Reliability: The Role of Programmed
Exception Handling." Association for Computing Machinery Inc. SIGPLAN No
tices, Vol. 12, No. 3, March 1977, pp. 95-100.

[74] Miller, R. B. "A Method for Man-Machine Task Analysis." Technical Report No.
10, Wright-Air Development Center, U.S. Air Force Base, Ohio, June 1953, pp.
53-137.

[75] Mitta, Deborah. "A Methodology for Quantifying Expert System Usability."
Human Factors, 1991, 33(2), pp. 233-245.

[76] Musa, J. D., A. lannino, K. Okumoto. Software Reliability Measurement, Pre
diction, Application. McGraw-Hill Book Com., New York, 1987, pp. 77-101.

[77] Morland, D.V.. "The Evaluation of Software Architecture." Datamation, Feb.
1985, pp. 123-132.

[78] Morse, A. "Some Principles for the Effective Display of Data." Commun. ACM,
1979, pp. 94-101.

[79] Nola, A. Di, S. Sessa, W. Pedrycz, and E. Sanchez. Fuzzy Relatiori Equations
and their Applications to Knowledge Engineering. Kluwer Academic Publishers
Group, Netherland, 1989, pp. 175-185.

[80] Norcio, Anthony F. and Jaki Stanley. "Adaptive Human-Computer Interfaces;
A Literature Survey and Perspective." IEEE Trans, on Systems, Man, and Cy
bernetics, vol. 19, no. 2, Mar./Apr. 1989, pp. 399-408.

www.manaraa.com

164

[81] Norman, D. A. "Categorization of Action Slips." Psychological Review, 88, 1981,
pp. 1-15.

[82] Pages, A., M. Gondran. System Reliability Evaluation and Prediction in Engi
neering. Springer-Verlag, 1986.

[83] Parnas, D. L. "On the Criteria to be used in Decomposing Systems into Mod
ules." Commun. ACM, vol. 15, 1972, pp. 1053-1058.

[84] Peters, G. "Human Error: Analysis and Control." Journal of the ASSE, Jan.
1966.

[85] Petersen, Dan. Human-Error Reduction and Safety Management. Garland
STPM Press, New York, 1982.

[86] Pressman, Roger S. Software Engineering. McGraw-Hill Book Co., New York,
1987, pp. 191-201.

[87] Quinlan, J. R. "INFERNO: A Cautious Approach to Uncertain Inference." Com
puter J. 26, 1983, pp. 255-269.

[88] Raduchel, William, Otto Eckstein. "Economic Modeling Languages: The DRI
Experience." Human-Computer Interaction, Ed. by G. Salvendy, Elsevier Science
Publishers B.V., Amsterdam, 1984.

[89] Randell, B. "Fault Tolerant and System Structuring." IEEE, Preceeding of 4th
Jerusalem Cof. on Information Technology, May 1984.

[90] Rasmussen, J., K. Duncan, J. Leplat. "Cognitive Control and Human Error:
New Technology and Human Error." New Technologies and Work a Wiley series,
1987, pp. 53-61.

[91] Rasmussen, J. "What Can Be Learned From Human Error Reports?" Changes
in Working Life, Ed. by K.D. Duncan, M.M. Gruneberg, and D. Wallis, John
Wiley & Sons Ltd., New York, 1980, pp. 97-113.

[92] Reason, James. "Generic Error-Modelling System(GEMS): A Cognitive Frame
work for Locating Common Human Error Forms." New Technology and Human
Error, Ed. by J. Rasmussen, K. Duncan and J. Leplat, John Wiley k, Sons. Ltd,
1987, pp. 63-83.

[93] Reason, J. T. "Actions not as Planned: The Price of Atomization." Aspects of
Consciousness, Ed. by G. Underwood and R. Stevens, Vol. 1, London Academic
Press, 1979.

www.manaraa.com

165

[94] Regulinski, T. L., W. B. Askren. "Stochastic Modeling of Human Performance
Effectiveness Functions." Proceeding of the Annual Reliability and Maintainabil
ity Symposium, IEEE, New York, 1972, pp. 407-416.

[95] Regulinski, T. L., W. B. Askren. "Mathematical Modeling of Human Perfor
mance Reliability." Proceeding of Annual Symposium on Reliability, IEEE, New
York, 1969, pp. 5-11.

[96] Rook, L. W. "Reduction of Human Error in Industrial Production." Report No.
SCTM 93-62(14), Sandia Laboratories, Albuquerque, New Mexico, June 1962.

[97] Rouse, W. B. "Fuzzy Models of Human Problem Solving." Advances in Fuzzy
Set, Probability Theory and Applications, Ed. by P. P. Wang, Plenum Press,
New York, 1983.

[98] Rouse, W. B. Systems Engineering Models of Human-Machine Interaction.
North Holland, New York, 1980.

[99] Rouse, W. B. "A Model of Human Decision Making in Fault Diagnosis Tasks that
include Feedback and Redundancy." IEEE Trans., Syst. Man Cyber., SMC-9(4),
Apr. 1979.

[100] Rouse, W. B., and R. M. Hunt. "A Fuzzy Rule-Based Model of Human Problem
Solving in Fault Diagnosis Tasks." Proc. IFAC 8th Triennial World Congress,
Kyoto, Japan, 1981.

[101] Ross, D., and K. Schoman. "Structured Analysis for Requirements Definition."
IEEE Trans., Software Engineering, vol. 3, no. 1, Jan. 1977, pp. 6-15.

[102] Salmon, Wesley C. " Causal Forks and Common Causes." Scientific Explanation
and the Causal Structure of the World, Princeton U. Press, 1984.

[103] SAS Institute Inc. SAS/STAT User's Guide. Vol 1 & 2, SAS Institute Inc.,
Cary, NC, 1990, pp. 2-27, 209-244, 1351-1456.

[104] Shooman, M. L. Software Engineering. McGraw-Hill Book Comp., New York,
1983, pp. 296-403.

[105] Sievert, G. E., and T. A. Mizell. "Specification-Based Software Engineering
with TAGS." Computer, vol. 18, no. 4, Apr. 1985, pp. 56-65.

[106] Sutton, Robert. Modeling Human Operators in Control System Design. John
Wiley & Sons Inc., New York, 1990, pp. 141-183.

www.manaraa.com

166

[107] Swain, A. D., H. E. Guttman. "Handbook of Human Reliability Analysis with
Emphasis on Nuclear Power Plant Application." NUREG/CR-1278, 1980.

[108] Swain, A. D. "An Error-Cause Removal Program for Industry." Human Factors,
12, 1973, pp. 207-221.

[109] Swain, A. D. Design Techniques for Improving Human Performance in Pro
duction. Industrial & Commercial Techniques Ltd., Fleet Street, London, EC4,
1973, pp. 30-32.

[110] Swain, A. D. "A Method for Performing a Human-Factors Reliability Analysis."
Report SCR-685, Sandia Corporation, Albuquerque, New Mexico, Aug. 1963.

[111] Teichroew, D., and E. Hershey. "PSL/PSA: A Computer Aided Technique for
Structured Documentation and Analysis of Information Processing Systems."
IEEE Trans., Software Engineering, vol. 3, no. 1, 1977, pp. 41-48.

[112] Thayer, Thomas A., Myronlipow, and E. C. Nelson. Software Reliability. North-
Holland Publishing Co., New York, 1978.

[113] Tillman, F. A., C. L. Hwang, W. Kuo. Optimization of Systems Reliability.
Marcel Dekker Inc., New York, 1980.

[114] Treisman, A. M. "Strategies and Models of Selective Attention." Psychological
Review, 1969, 76, pp. 282-299.

[115] Walters, G. F., J. A. McCall. "Software Quality Matrices for Life-Cycle Cost-
Reduction." IEEE Trans. Reliab., Vol. R-28, No. 3, 1979, pp. 212-220.

[116] Watson, I. A. "Review of Common Cause Failure." National Centre of Systems
Reliability, Report NCSR R27, 1981.

[117] Weinberg, G. M., E. L. Schulman. "Goals and Performance in Computer Pro
gramming." Human Factors, Vol. 16, No. 1, 1974, pp. 70-77.

[118] Weiberg, G. M. The Psychology of Computer Programming. Van Nostrand
Reinhold, New York, 1971.

[119] Welford, H. T. Skilled Performance: Perceptual and Motor Skills. Glenview,
111: Scott, Foresman, 1976.

[120] Woods, David D. "Modeling and Predicting Human Error." Human Perfor
mance Models for Computer-Aided Engineering, Ed. by J. I. Elkind, Academic
Press, Inc., 1990.

www.manaraa.com

167

[121] Youngs, Edward A. "Human Errors in Programming." Human Factors in Soft
ware Development: COMPSACSl.Ed. by Bill Curtis, L.A., C.A. 1981, pp. 383-
392.

[122] Zadeh, L. A. "The Role of Fuzzy Logic in the Management of Uncertainty in
Expert Systems." Fuzzy Sets and Systems, 11, 1983, pp. 199-227.

www.manaraa.com

168

APPENDIX A. THE COMMON-CAUSE PRINCIPLE

Common Cause and Rational Belief

Wesley Salmon [102] and Bas C. Van Fraassen [37] have successively refined and

elaborated Reichenbach's principle of the common cause, as part of a wide-ranging

inquiry into statistical inference and explanation. In this section, the probabilistic

concept of common cause, that is, the principle of the common cause, is derived.

Reichenbach's common cause principle says roughly that if there is a positive

correlation between simultaneous, spatially separate events, then there is a third

event in their common past which explains for their frequent joint occurrence. This

is an empirical statement. It reminds one somewhat of certain traditional principles

of metaphysics, such as that every event should have a cause. A scientific theory

concerning those correlated events is not complete unless it exhibits, or implies that

there is, such a common cause as a tactical maxim for scientific inquiry.

Extreme Bayesianism is the position that a rational person's epistemic state can

be represented faithfully and without loss by means of a probability function; that any

probability function at all can so represent some rational person; and that rational

change of epistemic state consists in conditioning of that personal probability on the

total evidence received.

If Reichenbach's principle can be explained as an empirical proposition, there are

www.manaraa.com

169

many probability functions that do not give it a high value. If one manages secondly

his garden of beliefs in such a way that, whenever he has a certain degree of belief

that two events are positively correlated, he gives at least that degree of belief to the

proposition that they have a common cause, then either he gives probability one to

that empirical proposition (the common cause principle) or else his belief change does

not follow the pattern of conditioning on the total evidence. As Salmon has rightly

emphasized, the principle of the common cause will appear as a powerful argument

for scientific realism when it comes in any of these rational inference related forms.

The Principle of the Common Cause

Two events, A and B , are called statistically independent if P { A B) = P { A) P { B) .

When the equality is replaced by the greater-than relation we may call them posi

tively correlated. A third event C, using the conditional probability P(—/C) may

have a relationship with either of these notions:

i f (1) P { A B) > P { A) P { B)

then there is an event C such that

(2) P{ABl'C) = P{AIC)P{BIC)

(3) P{ABIC) = P{AIC)P{BIC)

(4) P(AIC) > P(A/C)

(5) P{B/C) > P{B/C)

With the time element, the AB is an event which happens at a given time if and

only if both A and B happen at that time. Suppose that put Af for the (individual,

non-generic) event is the occurrence of (generic) event A at time t. Suppose that has

always occurred C in the intersection of the past cones of the occurrences of the A

www.manaraa.com

170

and B. There are two relatively independent questions which may be raised. The

first question is whether there is always an event C at a preceding time such that

the above probabilistic relations hold. The second one is whether if C satisfies the

stated conditions, it follows that C accounts for the correlation (can it reasonably be

termed the cause?).

Statistical Dependence

The following relationships are important on examining statistical dependence:

(6) P{AB) > P{A)P{B): A and B are positively correlated;

(7) P{AfB) > P{A): A has a positive dependence on B;

(8) P{AlB) > P{AIB): B is positively relevant to A;

(9) P{AIBC) = P{AfC): C screens off B from A.

In each case, if the probability function P is replaced by the conditional proba

bility Px = P(—/%), then the same terminology can be used with adding the rider

relative to X. One can say easily how cognate terms such as independent, negatively

relevant, and the like are used. Symmetric term, A and B are, is appropriate because

the relationship is so clearly symmetric in A and B. It is important that there is no

need to memorize the terms in (6)-(8), and their cognates, because the ones which

are easily confused are actually equivalent (provided all the probabilities involved are

well-defined). To get their this precise, let the letter, %, range over positive linear

relations among numbers, defined by the properties [37]:

I f O < x , y < \ , a n d 0 < b

then

(I) x ^ y i f f b x d t b y

www.manaraa.com

171

(I I) x d i y i f f { b + z) % (6 + y)

where =,<,>,<,> are all positive linear relations.

LEMMA. //3Î is a positive linear relation and P{X), P{BX) are positive, then

the following are mutually equivalent:

(A) P { A B / X) ^ P { A I X) P { B I X)

(B) P{AIBX)^P{AIX)

(C) P{AlBX)dtP{AlBX)

Using this Lemma, there are restatements on the properties of the common cause in

Reichenbach's principle in follows:

(10) If A and B are positively correlated, then there is an event C such that

(A) A a n d B a r e i n d e p e n d e n t r e l a t i v e t o C a n d a l s o r e l a t i v e t o C ,

(B) C is positively relevant both to A and to B.

(11) If B is positively relevant to A then there is an event C such that

(A) C , a n d C , s c r e e n s o f f B f r o m A ,

(B) Both A and B have a positive dependence on C.

www.manaraa.com

172

APPENDIX B. EXPERIMENTAL MATERIAL AND

REQUIREMENT SPECIFICATIONS

www.manaraa.com

173

[Experiment Procedures: Subject Phase]

(1) Subject screen and interview: Subjects are screened and
interviewed by the project supervisor according to their eligible
capability for the experiment of human-software interactions.
(2) Subject life data collection: Subject life data are collected
including personal data, computer programming background,
experience, and any medical problem.

(3) Initialization session; In this session, initial information
about the experiment is provided to subject with the general
description of project, requirements of specification, and whole
procedure of experiment and data collection.
(4) Educational and training session; Manual solving and mathematical
validation about programming requirements are provided, and common
cause error modes are taught about their definition, data collection
method, and representation of their allocation.
(5) Program design; After understanding requirements, problems can
be solved and the program is designed without encoding to computer.
This is done in out of experiment station.
(6) Consultation session: A consultation session is provided for
better understanding of requirements, system components, common
cause error modes before program encoding to computer.

(7) Subject preliminary questionnaires: Just before start to program
encoding, special conditions of subject's programming environments
and design considerations are gathered from the subject.
(8).Program encoding to computer; The designed program is encoded to
the computer using specified hardware work station/operating system.
(9) Representational interview session; In each 30-45 minutes,
common cause error data can be collected. During the programming,
Common cause errors are produced from human-software interactions
and program failures by the verification of program. With
correcting the error, occurrence time, correction time, and contents
of the failures are recorded on data collection sheet. During
programming, a subject is not interrupted in any way.
(10) Representation of common-cause errors: With the representational
interview, common-cause error protocol can be classified to
identification mode, and allocated to pattern recognition mode and
behavior domain mode with representational interview for common-cause
errors.

(11) Validation of data collection; Subject's task behavior is
monitored by the supervisor using another simultaneous logging
monitor, and that is taped to video recorder for their data
validation.
(12) Continue to collect data for common-cause human errors until
requirements are completed with a correct formatted output.
(13) After finishing the experiment, evaluate the experiment and
predict a rating weight for subject performance evaluation.

www.manaraa.com

174

91-P4-(Date/No.) : HUMAN-SOFTWARE DATA COLLECTION
Programmer:91P4- Starting Time:
Monitor : Ending Time:

Oc
No

Occur
Act j

Time
Cont

Moc
li

[6 COC
Pj

e
Bk

Description
of Failure and Error

Correct.
T(min)

www.manaraa.com

175

Serial #: 91-P4- Date: , 1991

.Name : , .S.S.#: - -
(Last) (First)

.Address: (H) .Tel:
(0) .Tel:

[Subject Life Data Collection;]

A.Sex: M or F B.Age: C.Grade:

D. Nationality: E. Major:

I. Computer Programming Background & Experience:

(1) How many years have you computer programmed? : yrs

(2) When did you program using FORTRAN or C most currently?
month ago Date:

(3) What size of programming project did you get? lines

(4) What kind of courses for computer programming did you take?

(5) Computer types preference:
(;type of hardware, workstation)

(6) Computer languages (Which language is your best preference?
Please circle it) :

(7) Software Packages:

J. Typing ability; pages/hour

K. Do you like(enjoy) a computer work or programming?

: (A B C D E)
more <— —> less

L. Do you have any medical (physical or mental) problem?

If yes, describe:

I hereby declare that I will honestly conduct to do my best in
the experiment, and that the above is true statement.

Signature Date

www.manaraa.com

176

[PRELIMINARY QUESTIONNAIRES for Programming Experiment]

91P4- Name: Date:

1. Conditions of subject environment:

a. Type of specific requirement;

b. Type of programming language;

c. Level of subject:

d. Use of operating system;

e. Use of hardware system;

2. How much familiar(knowledgable) are you with this requirement?

(strong, good, weak)

3. How much time did you spend to disign the program? hrs

4. What is your design method?

5. What is your condition level? . Physical: [A B C D E]
good < > bad

. Mental [A B C D E]
(Psychological)

*6. Coding time to computer minutes

*7. Mis-typing error during the edition: ##

*8. Typing skill: pages/hr

*9. Special situation to subject:

** You will have a representational interview at each 30-45 minutes
long. This session will be taken for the identification and the
allocation of your common-cause errors.

www.manaraa.com

177

Project 4-A. "HUMAN-SOFTWARE RELIABILITY EXPERIMENT"
- Optimal Sequence of Machine Replacement -

Project 4-A will involve the determination of an optimal sequence of
machines to employ in providing a service for a number of years
using FORTRAN or C language for the human-software reliability
experiment. The development will start with a manual exercise and
design the program to determine appropriate methods, then proceed
with the development of FORTRAN or C program to implement the
algorithm. During the programming, programmer's task behavior can
be observed to find the common cause human error in human-software
interaction using video camera monitor and recorder.

[Description of Problem and Requirement:]

The COST of buying a machine in the year of purchase and operating it
until the year of retirement can be found thru a COST function as
developed in STEPl. The COST of a sequence of machines is simply
the sum of the costs of the individual machines that constitute that
sequence. The COST functions employed in this assignment will be
provided in a tabular form for a initial exercise and a program.

To find the optimal replacement schedule for a specified LIFE, one
must consider the various replacement sequences, and select that
with the lowest total cost. All costs are expressed in current
(year 0) dollars, so that they may be added and compared.

During software development task, you and your observer should
collect the data by observing programmer's task behavior, then the
experimental data of the human-software reliability can be analyzed.

STEPl. COST Functions:

As a component of a program to find optimum replacement sequences
for equipment, there is needed a function to give the total cost of
a unit purchased in one specified year and retired in another. The
current year is year 0 of the anticipated replacement schedule. All
costs should be computed in terms of current dollars.

This program component will be developed in two steps:
A function subprogram PRESVAL(AMT, YEAR, INT)

where PRESVAL(REAL) = the PRESENT VALUE in dollars.
AMT(REAL) = the amount in dollars at the future date.
YEAR(INTEGER) = the number of years in the future that

the amount AMT is paid or received.
INT(REAL) = the annual interest rate expressed as a

decimal fraction (for example, 12% interest
would be 0.12)

A function subprogram COST(PURCHASEYEAR, RETIRE_YEAR)
where COST(REAL) = the total cost of the considered unit,

expressed in current dollars.

www.manaraa.com

178

PURCHASE_YEAR(INTEGER) = the year number in which the
considered purchase is to be made.

RETIRE_YEAR(INTEGER) = the year number in which the
unit is to be retired

FORMULAE :
The PRESENT VALUE of a future amount may be derived from the
compound interest formula:

FUTURE_VALUE = PRESENT_VALUE * (1 + INTEREST) ** NUM_OF_YEARS

The COST function should take into account the following items:
The equipment is purchased for a purchase price (to be asked
on the screen), which is paid at the year of purchase.
When the equipment is retired, it has a salvage value which will
be received at the year of retirement. This salvage value may
be computed as:

SALVAGE_VALUE = PURCH_PRICE * (0.8 ** AGE)

During the unit's productive life, there will be an operating
cost to be paid each year of service. (For computational
purposes, assume that this is paid at the start of each year.)
This operating cost increases with the age of the unit, and may
be computed as:

OPER_COST = $1200.00 + $500 * AGE

• The AGE of the unit is measured from the year of purchase.
The interest rate to be used will be provided on the screen.

STEP2. Optimizing Solution:

Develop a computer solution to this program, by written an
optimizing subroutine. The subroutine is to have five arguments:

SUBROUTINE FINDOPT(LIFE, COST, UNIT, LOWCOST, LASTPUR)
where

LIFE = an integer variable of the number of years for which service
is required. Your subroutine's algorithm will compute an
optimum sequence of machines that last this long.

COST = this is not an ordinary variable, but the name of a function
upon which your subroutine will call. FORTRAN allows a
program to pass the name of a subprogram as an argument to
another subprogram. The subprogram argument must be
declared EXTERNAL in the subprogram which receive it, and
this receiving subprogram may then invoke the passed
subprogram under the name of the dummy argument. The
algorithm to be employed will call this function to find
the cost to use each machine of a series. COST is a real
function, invoked for a machine purchased in year J and
kept until year K as; COST(J,K).

www.manaraa.com

179

UNIT = the unit number for output from the subroutine. This
allows the main program to control where output will appear
(screen of file). UNIT is an integer variable.

LOWCOST = a one-dimensional real array into which the subroutine
will put the minimum cost to provide service for any number
of years up to the LIFE value. LOWCOST(J) = the minimum
cost of providing machines from year 0 to the start of year
J. This array has a zeroth element that your subroutine
should set to zero. (The optimum cost to provide a machine
for 0 years is zero.) This value will be used in the
algorithm.

LASTPUR = a one dimensional integer array into which the
subroutine will put the year number when the last machine
in an optimal sequence is to be purchased. LASTPUR(J) =
the year of last purchase for the optimal sequence of
machines lasting J years. This array lets you trace
backwards the optimal sequence of machines.

STEP3. Main Program & Output:

Provide each question for given value for specified situation
(Input values for Purchasing price, Annual interest, and Length of
sequence year for simulation).
Make a main program to get a optimal output for given years with
correct output formats.

[Submit the following outputs:]
(1) Program list(:.FOR or .C) including main and three subprograms.
(2) Program output(:.OUT) with the same correct formats of handout.
(3) Flowchart and raw hand-writing code for program design.
(4) Raw data collection sheets of programming task experiment.
(5) Statistical data analysis of your experimental data using given

analysis form. (Mean, Variance, Percent of frequency &
correction time for each mode, Regression analysis with
frequency and correction time.) - by supervisor

[Manual Exercise for Computation:]
Given the following COST function, find the lowest total cost for a
LIFE of 3 years. Tabulate your calculations for the alternatives
below. Choose the sequence that results in the lowest total cost.

Sequence: 1+1+1 1+2 2+1 3

COST of
Machines in
Sequence
(PUR,RET)

Total Cost;

(0 ,1) .

(1 , 2) .

(2,3)

(0 ,1) .

(1,3).

(0 , 2) .

(2,3).

(0,3).

www.manaraa.com

180

[OUTPUT 1: COST Function;]
RETIRE YEAR

PURCH 1 2 3 4 5 6
YEAR

4477.78 6934.57 8316.60 9109.16 9570.01 9840.45
2487.65 3852.54 4620.33 5060.64 5316.67

1382.03 2140.30 2566.85 2811.47
767.79 1189.05 1426.03

426.55 660.59
236.97

As the number of years grows, the number of alternate machine
sequences becomes quite large. To provide a better strategy for the
search, find the optimum as a member of a series — if the best
choices for all prior LIFEs are known, then the search for the
currently-desired life may involve a much smaller number of
alternatives. For example, in studying a LIFE of 6 years, one need
not investigate every sequence in which the final machine is
purchased in year 4, since one has already found the best way to
provide service for the first four years.
Using this series approach, find the lowest costs for LIFE values up
to 5 years. Record your analysis in the following table:

ALT LOWEST LAST
LIFE COST COST PURCH
1: The ONLY way from 0 to 1: 0

2: .Alternative: COST(0,2)
Alternative: LOWCOST(l) + C0ST(1,2)

The lowest-cost way from 0 to 2:

3; Alternative: COST(0,3)
Alternative: LOWCOST(l) + C0ST(1,3)
Alternative: L0WC0ST(2) + COST(2,3)

The lowest-cost way from 0 to 3 :
(Does this agree with your answer from Ex.1?)

Alternative: COST(0,4)
Alternative: LOWCOST(l) + C0ST(1,4)
Alternative: L0WC0ST(2) + COST(2,4)
Alternative; L0WC0ST(3) + COST(3,4)

The lowest-cost way from 0 to 4;

Alternative: COST(0,5)
Alternative: LOWCOST(l) + COST(1,5)
Alternative; L0WC0ST(2) + COST(2,5)
Alternative: L0WC0ST(3) + COST(3,5)
Alternative: L0WC0ST(4) + COST(4,5)

The lowest-cost way from 0 to 5;

What is the sequence of machines that will achieve this lowest cost
for a LIFE of 5 years?

www.manaraa.com

181

Project 4-B. "HUMAN-SOFTWARE RELIABILITY EXPERIMENT"
- Optimal Inventory System and Simulation -

Project 4-B will be produced an optimal inventory policy to
determine the order quantity and the reorder point for minimum
inventory cost. This project will be conducted using programming
language for human-software interaction and reliability experiment.
Development will start with a manual exercise and design the
program to determine appropriate methods, then proceed with the
development of FORTRAN or C program to implement the algorithm.
During the programming, programmer's task behavior can be observed
to find the common cause human error in human-software interaction.

[Description of Problem and Requirement:].

Project4-B will involve the analysis of an inventory control problem
and the analysis of an experiment of human-software reliability in
human-software interaction systems. You will simulate the
performance of an inventory management procedure under random
demands, selecting the management parameters for optimum (that is,
lowest cost) control. Project will be observed by supervisor using
video camera monitor and recorder.

Situation in inventory system;

The inventory quantity may be positive, representing items in
stock, or negative, representing unfilled orders.
The inventory control strategy is to order the REORDER QUANTITY
whenever the STARTING INVENTORY for the day is at or below the
REORDER POINT. This order will be delivered overnight, and will
be a part of the next day's STARTING INVENTORY.

Information of external environment:
Case (Jan. 1991):

MINIMUM DEMAND = 10 UNITS/DAY
MAXIMUM DEMAND = 20 UNITS/DAY
BEGIN INVENTORY = 20 UNITS
SAFETY INVENTORY LEVEL = 10 UNITS
ORDER COST = $100/ORDER
HOLDING COST = $1/UNIT/DAY
SHORTAGE COST = $10/UNIT/DAY

Three 'costs' are associated with the management function:
The ORDER COST is a fixed cost of processing an order for
additional inventory, and is PER ORDER. (This is NOT the
cost of the inventory itself, but the processing costs.)

The HOLDING COST is the cost of holding goods, including the
costs of storage and of capital being tied up in this
inventory. It is proportional to the (positive) inventory
on hand.

www.manaraa.com

182

The SHORTAGE COST is the cost of NOT being able to fill a
customer's order promptly. This 'cost' is difficult to
measure, being largely a loss of future business from
dissatisfied customers, but a strategy that ignores this
cost in its computations will invariably make this true cost
large in the efforts to minimize the others. It will be
approximated as proportional to each days STARTING SHORTAGE
(If we can tell the customer that the desired items have
already been ordered and will be in tomorrow morning, there
will be no dissatisfaction.)

'EOQ' is a inventory model to determine the particular lot size
that will result in the lowest value for total cost with given
demand(:D), holding cost(;H), order cost(:P).

Qo = SQRT((2*P*D) / H)

STEP (1) Develop a subroutine for daily randum demand using randum
number generator within maximum demand and minimum demand.
STEP (2) Produce a main program to solve the situation of handout
with the simulation results including a order quantity and a reorder
point. Make a very user-interactive program for input/output. Get
a output with similar format of example.
STEP (3) Produce an alternative decision(solution) if demand will
increase 20% and all of the costs will increase 10% at the next
year, Jan. 1992.
STEP (4) Develop a subprogram to fine Qo with 'EOQ' model. Compare
the result with previous model.

[Task's of inventory control :]
1) Complete the formulae in each cell(####) of inventory system

with the same format of handout.
2) Simulate your inventory control system by the controllable

inputs (more than 5 runs in each set of controllable variables
(Reorder point, fixed order quantity) and keep each total cost
for the calculation of normalized cost) with multi-runs.

3) Analyze and decide your optimal inventory strategy to minimize
the total inventory cost.

4) Develop your own EOQ model for order quantity instead of fixed
order quantity, and simulate with this situation.

5) Compare with these two situations for your optimal inventory
policy.

[Submit the following outputs;]
(1) Program list(:.FOR or .C) including main and three subprograms.
(2) Program output(:.OUT) with a similar correct formats of handout.
(3) Flowchart and raw hand-writing code for program design.
(4) Data collection sheets of programming task experiment.
(5) Statistical data analysis of your experimental data using given

analysis form. (Mean, Variance, Percent of frequency &
correction time for each mode, Regression analysis with
frequency and correction time.) - by supervisor

www.manaraa.com

183

Sub]##: 91P4-B_ Name; IMSE 91-PROJ4-B

SIMULATION INPUTS
EXTERNAL ENVIRONMENT:

MIN DEMAND=
MAX DEMAND=
BEGIN INV =
SAFETY INV=
ORDER COST=
HOLD COST =
SHORT COST=

0 UNITS/DAY
0 UNITS/DAY
0 UNITS
0 UNITS

00.00 $/ORDER
00.00 $/UNIT/DAY
00.00 $/UNIT/DAY

CONTROLLABLE INPUTS:
REORDERED PT= #### UNITS
ORDER QUANT = #### UNITS

MULTI-RUN/INPUT SET:
MIN RUNS = 5 RUNS

SIMULATION OUTPUT
ONE RUN:

AVERAGE DEMAND=
TOT ORDER COST=
TOT HOLD COST =
TOT SHORT COST=
TOTAL COST

. # #
. # #
. # #
. # #
.##

UNITS/DAY
$ / MONTH
$ / MONTH
$ / MONTH
$ / MONTH

MULTI-RUN ANALYSIS:
RUN COUNT = # RUNS

NORMALIZED COST(NCOST) is based on
average daily demand for month.

NORM. COST: ($/UNIT/DAY)
NCOST MEAN: ($/UNIT/DAY)
NCOST STD DEV:($/UNIT/DAY)

INVENTORY SIMULATION
DAY INVENT DEMAND ORDER ORDCOST HOLDCOST SHRTCOST

1 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

2 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

3 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

4 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

5 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

6 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

7 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

8 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

9 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

10 " # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

11 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

12 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

13 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

14 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

15 #### # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

16 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

17 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

18 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

19 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

20 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

21 # # # # # # # # • # # # # # # # # . # # # # # # . # # # # # # . # #

22 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

23 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

24 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

25 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

26 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

27 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

28 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

29 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

30 # # # # # # # # # # # # # # # # . # # # # # # . # # # # # # . # #

Total:

www.manaraa.com

184

[Subject Calibration Factors & Evaluations:]

Subject #: Name:

Score:
1. Programming experience: /5

. Programming experienced years: /5

. Recurrence of programming: /5

. Project scale involved: /5

2 . Knowledge background: /5
. Knowledge of programming language: /5
. Familiarity with hardware: /5
. Familiarity with operating system: /5

3. Intelligence: /5
. Problem solving ability; /5
. Creativity of entire approach: /5
. Requirement understandability: /5
. Recognition of project process: /5

4. Experiment attitude: /5
. Concentration to task: /5
. Commitment to regulation: /5
. Preparation effort to task: /5

5. Work environmental conditions to subject; /5
. Entire condition of work station; /5
. Noise, temperature, humidity, etc.: /5
. Subject's physical conditions: /5
. Extra mental, psychological stress; /5

Total score; /25

Average score: /5

www.manaraa.com

185

[Rating Analysis of Subject Calibration Factors & Evaluations:]

Name: S.S #:
(Last) (First)

* 1 2 3 4 5
poor< > strong related

1. Programming experience:
. Programming experienced years:
. Recurrence of programming:
. Project scale involved;

2. Knowledge background: 1 2 3 4 5
. Knowledge of programming language: 1 2 3
. Familiarity with hardware: 1 2 3
. Familiarity with operating system: 1 2 3
. Educational background of requirement: 1 2 3

3. Intelligence:
. Problem solving ability:
. Creativity of entire approach:
. Requirement understandability:
. Recognition of project process:

4. Experiment attitude;
. Concentration to task;
. Commitment to regulation:
. Preparation effort to task;

5. Work environmental conditions to subject: 1 2 3 4 5
. Entire condition of work station; 1 2 3
. Noise, temperature, humidity, etc.; 1 2 3
. Subject's physical conditions; 1 2 3
. Extra mental, psychological stress: 1 2 3

1_2 3
1 2 3
1 2 3

1_2 3
1 2 3
1_2_3
12 3

12 3
1_2__3
1 2 3

	1992
	Common-cause analysis in human-software interaction: system design, error control mechanism, and prevention
	Peom Park
	Recommended Citation

	tmp.1416278105.pdf.pmr9H

